TFT-OLED像素单元及驱动电路(2/3)

来源:本站
导读:目前正在解读《TFT-OLED像素单元及驱动电路(2/3)》的相关信息,《TFT-OLED像素单元及驱动电路(2/3)》是由用户自行发布的知识型内容!下面请观看由(电工技术网 - www.9ddd.net)用户发布《TFT-OLED像素单元及驱动电路(2/3)》的详细说明。

TFT-OLED像素单元及驱动电路(2/3)

图3 电流控制型3-TFT像素电路

2.2.2 四管TFT结构

国外较早见报道的4-TFT电流控制带阈值电压补偿的驱动电路如图4。在寻址阶段,扫描电压开启T1、T3,数据电流Idata流过T4进入发光单元,T4的栅源电压保存在Cs中;寻址结束,T1和T3关闭,VG的引入能使T2打开,这时T4连到VDD上作为电流源,它只受保存在Cs中的电压控制,这就消除了阈值电压变化的影响,然而VG线的引入影响了显示器的开口率。

TFT-OLED像素单元及驱动电路(2/3)

图4 电流控制带阈值电压补偿的模拟驱动电路

TFT-OLED像素单元及驱动电路(2/3)

图5 电流控制电流镜像素电路

获得广泛应用的是以电流镜像为基础的电流控制型像素单元电路,下面以图5所示结构阐述这类电路的工作原理。当扫描线上电压处于高电平时,此像素被选中,晶体管T1、T2导通,Idata首先从数据线通过T1管对电容Cs充电。当电容Cs两端电压达到一定值时,整个Idata通过T2管流到T3管。同时,由于T3管和T4管的栅极电压相等,数据电流Idata被镜像为流经OLED的电流。当此像素未被选中时,T4管的栅极电压由电容Cs两端所存储的电压所决定,维持着电流驱动OLED。

研究发现开关管T2的老化,T3、T4阈值电压VT的漂移差别,T3、T4的阈值电压VT初始值不同是影响以电流镜为基础a-Si:H电路的驱动电流稳定性的主要机制。因此,电流镜准确实现电流跟随功能的基本要求是T2尽可能开态低阻,关态低漏电流;T3、T4的初始阈值电压相等,且变化一致;T3、T4工作于饱和区。而郭斌等人模拟和分析了作为电流控制型多晶硅薄膜晶体管(poly-SiTFT)有源矩阵有机发光二极管(AM-LOED)像素单元的poly-SiTFT/OLED耦合对的J-V特性和poly-SiTFT电流镜的I-V特性。结果表明,poly-SiTFT/OLED耦合对的驱动电压低,在200A/m2下不超过8V;而TFT电流镜的跟随能力很好,在0.0~2.5μA时饱和电压只有1.5~2.5V。一般说来,以电流镜像为基础的电路具有良好的补偿特性,类似于此类型的电流控制型驱动电路也能很好地证明这一点,并从实验得出,这种电路具有很好的线性输出,能对显示的灰度作精确性地调节。

四管电流驱动型电路缺陷在于低亮度显示时,充电时间长,信号延时严重。目前,主要通过调节OLED的电流与输入数据电流的缩减比例,来减小数据线与像素间的充电时间。已见报道的有两类方法,一是基于TFT几何尺寸,一是基于存储电容尺寸。分压式电流控制型驱动电路属于前者,电路中流经OLED的电流与数据电流的关系为:

TFT-OLED像素单元及驱动电路(2/3)

这里μ为场效应迁移率,Cox为单位面积的绝缘层电容;W和L分别为MOS管沟道宽度和长度。由以上关系可知,采用大数据电流充电,能得到小的IOLED,同时减少了充电时间,但这是以增加功耗为代价的。而串联存储电容结构的电流控制型电路属于后者,选通阶段,Idata=IOLED,非选通阶段,电路中流经OLED的电流与数据电流的关系为Idata=RSCALEIOLED,其中RSCALE为电流缩减比率,它与存储电容CST2、开关管栅源/栅漏等效交迭电容COV-T2、扫描信号在选通与非选通时幅度的变化△VSCAN相关,且随着以上参数的增大,RSCALE随之增大。与前者相比,该电路优势在于通过RSCALE与IOLED适当组合,不仅可以更大程度地减小响应时间,而且在不增加功耗的前提下,能满足高、低不同灰度级的显示需要。

2.2.3 五管TFT结构

B.Mazhari等人提出了五管单元像素电路,该电路采用一个栅源短接的TFT作为负反馈电阻,有效抑制多晶硅TFT扭结效应(kinkeffect),实现了数据电流高达20A,输出特性曲线仍具有良好的线性,克服了以前各种电路在保证线性的前提下电流范围小的缺陷。爱普生-剑桥实验室提出了先进的自调整电压源技术,这也是一种五管驱动方案,电路通过单位增益放大器存储驱动管TFT的源电压,保证选通与非选通阶段驱动管偏置条件一致。

尽管电流范围限制在0.2A~1A,还是有效改善了数据电流较小时阈值电压的变化对OLED电流影响较大的缺点,但电路结构复杂,限制了像素的占空因数。

3 驱动系统

一个完整的有源矩阵OLED驱动显示系统,除了由像素单元电路构成的矩阵显示屏外,还包括驱动IC(行、列控制/驱动电路)、单片机控制电路等,OLED有源驱动系统典型框图如图6。

TFT-OLED像素单元及驱动电路(2/3)

图6 OLED有源驱动系统典型框图

显示用的图像数据存储于ROM或RAM中,CPU或MCU控制电路产生总控制信号,行控制电路和列驱动电路在总控制信号下,结合各自内部功能,产生基本行信号和基本列信号,行驱动电路和列驱动电路在总控制信号、基本行信号和基本列信号下,结合各自内部功能,产生行扫描信号和列数据信号,使OLED显示屏显示存储于ROM或RAM中的图像信息。

驱动IC置于控制电路与有源玻璃板之间,是整个驱动电路的核心。全球已经有多家公司在从事OLED驱动IC的研究,到目前为止,还没有完全商业化的AM-OLED的驱动IC。但NextSierra公司已推出了分别集成的TFT-OLED行列驱动NXS1008、NXS1009和控制芯片NXS1010,张志伟等人采用该系列芯片,通过MCS-51单片机的控制来驱动240×320×3点阵的TFT-OLED屏,实现了大信息量的动态图形显示。

由于液晶显示器件的配套驱动芯片功能比较完善,且价格低廉,所以将此类芯片移用于有源矩阵显示屏(AM-OLED)成为了国内外当前的研究焦点。

提醒:《TFT-OLED像素单元及驱动电路(2/3)》最后刷新时间 2024-03-14 01:00:45,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《TFT-OLED像素单元及驱动电路(2/3)》该内容的真实性请自行鉴别。