1.原理
因为排版的原因,用pow(X,Y)表示X的Y次幂,用B[0],B[1],...,B[m-1]表示一个序列,
其中[x]为下标。
假设:
B[x],b[x]都是二进制序列,取值0或1。
M = B[m-1]*pow(2,m-1) + B[m-2]*pow(2,m-2) + ... + B[1]*pow(2,1) + B[0]*pow
(2,0)
N = b[n-1]*pow(2,n-1) + b[n-2]*pow(2,n-2) + ... + b[1]*pow(2,1) + n[0]*pow
(2,0)
pow(N,2) = M
(1) N的最高位b[n-1]可以根据M的最高位B[m-1]直接求得。
设 m 已知,因为 pow(2, m-1) <= M <= pow(2, m),所以 pow(2, (m-1)/2) <= N <=
pow(2, m/2)
如果 m 是奇数,设m=2*k+1,
那么 pow(2,k) <= N < pow(2, 1/2+k) < pow(2, k+1),
n-1=k, n=k+1=(m+1)/2
如果 m 是偶数,设m=2k,
那么 pow(2,k) > N >= pow(2, k-1/2) > pow(2, k-1),
n-1=k-1,n=k=m/2
所以b[n-1]完全由B[m-1]决定。
余数 M[1] = M - b[n-1]*pow(2, 2*n-2)
(2) N的次高位b[n-2]可以采用试探法来确定。
因为b[n-1]=1,假设b[n-2]=1,则 pow(b[n-1]*pow(2,n-1) + b[n-1]*pow(2,n-2),
2) = b[n-1]*pow(2,2*n-2) + (b[n-1]*pow(2,2*n-2) + b[n-2]*pow(2,2*n-4)),
然后比较余数M[1]是否大于等于 (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4)。这种
比较只须根据B[m-1]、B[m-2]、...、B[2*n-4]便可做出判断,其余低位不做比较。
若 M[1] >= (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 则假设有效,b[n-2] =
1;
余数 M[2] = M[1] - pow(pow(2,n-1)*b[n-1] + pow(2,n-2)*b[n-2], 2) = M[1] -
(pow(2,2)+1)*pow(2,2*n-4);
若 M[1] < (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 则假设无效,b[n-2] =
0;余数 M[2] = M[1]。
(3) 同理,可以从高位到低位逐位求出M的平方根N的各位。
使用这种算法计算32位数的平方根时最多只须比较16次,而且每次比较时不必把M的各位逐
一比较,尤其是开始时比较的位数很少,所以消耗的时间远低于牛顿迭代法。
2. 实现代码
这里给出实现32位无符号整数开方得到16位无符号整数的C语言代码。
------------------------------------------------------------------------------- - /****************************************/ /*Function: 开根号处理 */ /*入口参数:被开方数,长整型 */ /*出口参数:开方结果,整型 */ /****************************************/ unsigned int sqrt_16(unsigned long M) { unsigned int N, i; unsigned long tmp, ttp; // 结果、循环计数 if (M == 0) // 被开方数,开方结果也为0 return 0; N = 0; tmp = (M >> 30); // 获取最高位:B[m-1] M <<= 2; if (tmp > 1) // 最高位为1 { N ++; // 结果当前位为1,否则为默认的0 tmp -= N; } for (i=15; i>0; i--) // 求剩余的15位 { N <<= 1; // 左移一位 tmp <<= 2; tmp += (M >> 30); // 假设 ttp = N; ttp = (ttp<<1)+1; M <<= 2; if (tmp >= ttp) // 假设成立 { tmp -= ttp; N ++; } } return N; }