基于51单片机学习板。用S1键作为控制跑马灯的方向按键,S5键作为控制跑马灯方向的加速度按键,S9键作为控制跑马灯方向的减速度按键,S13键作为控制跑马灯方向的启动或者暂停按键。记得把输出线P0.4一直输出低电平,模拟独立按键的触发地GND。
(2)实现功能:
跑马灯运行:第1个至第8个LED灯一直不亮。在第9个至第16个LED灯,依次逐个亮灯并且每次只能亮一个灯。每按一次独立按键S13键,原来运行的跑马灯会暂停,原来暂停的跑马灯会运行。用S1来改变方向。用S5和S9来改变速度,每按一次按键的递增或者递减以10为单位。
数码管显示:本程序只有1个窗口,这个窗口分成3个局部显示。8,7,6位数码管显示运行状态,启动时显示“on”,停止时显示“oFF”。5位数码管显示数码管方向,正向显示“n”,反向显示“U”。4,3,2,1位数码管显示速度。数值越大速度越慢,最慢的速度是550,最快的速度是50。
(3)源代码讲解如下:
#include "REG52.H"
#define const_voice_short 40 //蜂鸣器短叫的持续时间
#define const_key_time1 20 //按键去抖动延时的时间
#define const_key_time2 20 //按键去抖动延时的时间
#define const_key_time3 20 //按键去抖动延时的时间
#define const_key_time4 20 //按键去抖动延时的时间
void initial_myself();
void initial_peripheral();
void delay_short(unsigned int uiDelayShort);
void delay_long(unsigned int uiDelaylong);
//驱动数码管的74HC595
void dig_hc595_drive(unsigned char ucDigStatusTemp16_09,unsigned char ucDigStatusTemp08_01);
void display_drive(); //显示数码管字模的驱动函数
void display_service(); //显示的窗口菜单服务程序
//驱动LED的74HC595
void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01);
void led_flicker_09_16(); //第9个至第16个LED的跑马灯程序,逐个亮并且每次只能亮一个.
void led_update(); //LED更新函数
void T0_time(); //定时中断函数
void key_service(); //按键服务的应用程序
void key_scan();//按键扫描函数 放在定时中断里
sbit beep_dr=P2^7; //蜂鸣器的驱动IO口
sbit key_sr1=P0^0; //对应学习板的S1键
sbit key_sr2=P0^1; //对应学习板的S5键
sbit key_sr3=P0^2; //对应学习板的S9键
sbit key_sr4=P0^3; //对应学习板的S13键
sbit key_gnd_dr=P0^4; //模拟独立按键的地GND,因此必须一直输出低电平
sbit led_dr=P3^5;
sbit dig_hc595_sh_dr=P2^0; //数码管的74HC595程序
sbit dig_hc595_st_dr=P2^1;
sbit dig_hc595_ds_dr=P2^2;
sbit hc595_sh_dr=P2^3; //LED灯的74HC595程序
sbit hc595_st_dr=P2^4;
sbit hc595_ds_dr=P2^5;
unsigned char ucKeySec=0; //被触发的按键编号
unsigned int uiKeyTimeCnt1=0; //按键去抖动延时计数器
unsigned char ucKeyLock1=0; //按键触发后自锁的变量标志
unsigned int uiKeyTimeCnt2=0; //按键去抖动延时计数器
unsigned char ucKeyLock2=0; //按键触发后自锁的变量标志
unsigned int uiKeyTimeCnt3=0; //按键去抖动延时计数器
unsigned char ucKeyLock3=0; //按键触发后自锁的变量标志
unsigned int uiKeyTimeCnt4=0; //按键去抖动延时计数器
unsigned char ucKeyLock4=0; //按键触发后自锁的变量标志
unsigned int uiVoiceCnt=0; //蜂鸣器鸣叫的持续时间计数器
unsigned char ucLed_dr1=0; //代表16个灯的亮灭状态,0代表灭,1代表亮
unsigned char ucLed_dr2=0;
unsigned char ucLed_dr3=0;
unsigned char ucLed_dr4=0;
unsigned char ucLed_dr5=0;
unsigned char ucLed_dr6=0;
unsigned char ucLed_dr7=0;
unsigned char ucLed_dr8=0;
unsigned char ucLed_dr9=0;
unsigned char ucLed_dr10=0;
unsigned char ucLed_dr11=0;
unsigned char ucLed_dr12=0;
unsigned char ucLed_dr13=0;
unsigned char ucLed_dr14=0;
unsigned char ucLed_dr15=0;
unsigned char ucLed_dr16=0;
unsigned char ucLed_update=0; //刷新变量。每次更改LED灯的状态都要更新一次。
unsigned char ucLedStep_09_16=0; //第9个至第16个LED跑马灯的步骤变量
unsigned int uiTimeCnt_09_16=0; //第9个至第16个LED跑马灯的统计定时中断次数的延时计数器
unsigned char ucLedStatus16_09=0; //代表底层74HC595输出状态的中间变量
unsigned char ucLedStatus08_01=0; //代表底层74HC595输出状态的中间变量
unsigned char ucLedDirFlag=0; //方向变量,把按键与跑马灯关联起来的核心变量,0代表正方向,1代表反方向
unsigned int uiSetTimeLevel_09_16=300; //速度变量,此数值越大速度越慢,此数值越小速度越快。
unsigned char ucLedStartFlag=1; //启动和暂停的变量,0代表暂停,1代表启动
unsigned char ucDigShow8; //第8位数码管要显示的内容
unsigned char ucDigShow7; //第7位数码管要显示的内容
unsigned char ucDigShow6; //第6位数码管要显示的内容
unsigned char ucDigShow5; //第5位数码管要显示的内容
unsigned char ucDigShow4; //第4位数码管要显示的内容
unsigned char ucDigShow3; //第3位数码管要显示的内容
unsigned char ucDigShow2; //第2位数码管要显示的内容
unsigned char ucDigShow1; //第1位数码管要显示的内容
unsigned char ucDigDot8; //数码管8的小数点是否显示的标志
unsigned char ucDigDot7; //数码管7的小数点是否显示的标志
unsigned char ucDigDot6; //数码管6的小数点是否显示的标志
unsigned char ucDigDot5; //数码管5的小数点是否显示的标志
unsigned char ucDigDot4; //数码管4的小数点是否显示的标志
unsigned char ucDigDot3; //数码管3的小数点是否显示的标志
unsigned char ucDigDot2; //数码管2的小数点是否显示的标志
unsigned char ucDigDot1; //数码管1的小数点是否显示的标志
unsigned char ucDigShowTemp=0; //临时中间变量
unsigned char ucDisplayDriveStep=1; //动态扫描数码管的步骤变量
unsigned char ucWd1Part1Update=1; //窗口1的局部1更新显示变量
unsigned char ucWd1Part2Update=1; //窗口1的局部2更新显示变量
unsigned char ucWd1Part3Update=1; //窗口1的局部3更新显示变量
//根据原理图得出的共阴数码管字模表
code unsigned char dig_table[]=
{
0x3f, //0 序号0
0x06, //1 序号1
0x5b, //2 序号2
0x4f, //3 序号3
0x66, //4 序号4
0x6d, //5 序号5
0x7d, //6 序号6
0x07, //7 序号7
0x7f, //8 序号8
0x6f, //9 序号9
0x00, //无 序号10
0x40, //- 序号11
0x73, //P 序号12
0x5c, //o 序号13
0x71, //F 序号14
0x3e, //U 序号15
0x37, //n 序号16
};
void main()
{
initial_myself();
delay_long(100);
initial_peripheral();
while(1)
{
key_service(); //按键服务的应用程序
display_service(); //显示的窗口菜单服务程序
led_flicker_09_16(); //第9个至第16个LED的跑马灯程序,逐个亮并且每次只能亮一个.
led_update(); //LED更新函数
}
}
/* 注释一:
* 由于本程序只有1个窗口,而这个窗口又分成3个局部,因此可以省略去窗口变量uWd,
* 只用三个局部变量ucWdxPartyUpdate就可以了。
*/
void display_service() //显示的窗口菜单服务程序
{
if(ucWd1Part1Update==1) //更新显示当前系统是处于运行还是暂停的状态
{
ucWd1Part1Update=0; //及时把更新变量清零,防止一直进来更新
if(ucLedStartFlag==1) //启动,显示on
{
ucDigShow8=13; //显示o
ucDigShow7=16; //显示n
ucDigShow6=10; //显示空
}
else //暂停,显示oFF
{
ucDigShow8=13; //显示o
ucDigShow7=14; //显示F
ucDigShow6=14; //显示F
}
}
if(ucWd1Part2Update==1) //更新显示当前系统是处于正方向还是反方向
{
ucWd1Part2Update=0; //及时把更新变量清零,防止一直进来更新
if(ucLedDirFlag==0) //正方向,向上,显示n
{
ucDigShow5=16; //显示n
}
else //反方向,向下,显示U
{
ucDigShow5=15; //显示U
}
}
if(ucWd1Part3Update==1) //更新显示当前系统的速度,此数值越大速度越慢,此数值越小速度越快。
{
ucWd1Part3Update=0; //及时把更新变量清零,防止一直进来更新
ucDigShow4=10; //显示空 这一位不用,作为空格
if(uiSetTimeLevel_09_16>=100)
{
ucDigShow3=uiSetTimeLevel_09_16/100; //显示速度的百位
}
else
{
ucDigShow3=10; //显示空
}
if(uiSetTimeLevel_09_16>=10)
{
ucDigShow2=uiSetTimeLevel_09_16%100/10; //显示速度的十位
}
else
{
ucDigShow2=10; //显示空
}
ucDigShow1=uiSetTimeLevel_09_16%10; //显示速度的个位
}
}
void key_scan()//按键扫描函数 放在定时中断里
{
if(key_sr1==1)//IO是高电平,说明按键没有被按下,这时要及时清零一些标志位
{
ucKeyLock1=0; //按键自锁标志清零
uiKeyTimeCnt1=0;//按键去抖动延时计数器清零,此行非常巧妙,是我实战中摸索出来的。
}
else if(ucKeyLock1==0)//有按键按下,且是第一次被按下
{
uiKeyTimeCnt1++; //累加定时中断次数
if(uiKeyTimeCnt1>const_key_time1)
{
uiKeyTimeCnt1=0;
ucKeyLock1=1; //自锁按键置位,避免一直触发
ucKeySec=1; //触发1号键
}
}
if(key_sr2==1)//IO是高电平,说明按键没有被按下,这时要及时清零一些标志位
{
ucKeyLock2=0; //按键自锁标志清零
uiKeyTimeCnt2=0;//按键去抖动延时计数器清零,此行非常巧妙,是我实战中摸索出来的。
}
else if(ucKeyLock2==0)//有按键按下,且是第一次被按下
{
uiKeyTimeCnt2++; //累加定时中断次数
if(uiKeyTimeCnt2>const_key_time2)
{
uiKeyTimeCnt2=0;
ucKeyLock2=1; //自锁按键置位,避免一直触发
ucKeySec=2; //触发2号键
}
}
if(key_sr3==1)//IO是高电平,说明按键没有被按下,这时要及时清零一些标志位
{
ucKeyLock3=0; //按键自锁标志清零
uiKeyTimeCnt3=0;//按键去抖动延时计数器清零,此行非常巧妙,是我实战中摸索出来的。
}
else if(ucKeyLock3==0)//有按键按下,且是第一次被按下
{
uiKeyTimeCnt3++; //累加定时中断次数
if(uiKeyTimeCnt3>const_key_time3)
{
uiKeyTimeCnt3=0;
ucKeyLock3=1; //自锁按键置位,避免一直触发
ucKeySec=3; //触发3号键
}
}
if(key_sr4==1)//IO是高电平,说明按键没有被按下,这时要及时清零一些标志位
{
ucKeyLock4=0; //按键自锁标志清零
uiKeyTimeCnt4=0;//按键去抖动延时计数器清零,此行非常巧妙,是我实战中摸索出来的。
}
else if(ucKeyLock4==0)//有按键按下,且是第一次被按下
{
uiKeyTimeCnt4++; //累加定时中断次数
if(uiKeyTimeCnt4>const_key_time4)
{
uiKeyTimeCnt4=0;
ucKeyLock4=1; //自锁按键置位,避免一直触发
ucKeySec=4; //触发4号键
}
}
}
void key_service() //按键服务的应用程序
{
switch(ucKeySec) //按键服务状态切换
{
case 1:// 改变跑马灯方向的按键 对应学习板的S1键
if(ucLedDirFlag==0) //通过中间变量改变跑马灯的方向
{
ucLedDirFlag=1;
}
else
{
ucLedDirFlag=0;
}
ucWd1Part2Update=1; //及时更新显示方向
uiVoiceCnt=const_voice_short; //按键声音触发,滴一声就停。
ucKeySec=0; //响应按键服务处理程序后,按键编号清零,避免一致触发
break;
case 2:// 加速按键 对应学习板的S5键 uiSetTimeLevel_09_16越小速度越快
uiSetTimeLevel_09_16=uiSetTimeLevel_09_16-10;
if(uiSetTimeLevel_09_16<50) //最快限定在50
{
uiSetTimeLevel_09_16=50;
}
ucWd1Part3Update=1; //及时更新显示速度
uiVoiceCnt=const_voice_short; //按键声音触发,滴一声就停。
ucKeySec=0; //响应按键服务处理程序后,按键编号清零,避免一致触发
break;
case 3:// 减速按键 对应学习板的S9键 uiSetTimeLevel_09_16越大速度越慢
uiSetTimeLevel_09_16=uiSetTimeLevel_09_16+10;
if(uiSetTimeLevel_09_16>550) //最慢限定在550
{
uiSetTimeLevel_09_16=550;
}
ucWd1Part3Update=1; //及时更新显示速度
uiVoiceCnt=const_voice_short; //按键声音触发,滴一声就停。
ucKeySec=0; //响应按键服务处理程序后,按键编号清零,避免一致触发
break;
case 4:// 启动和暂停按键 对应学习板的S13键 ucLedStartFlag为0时代表暂停,为1时代表启动
if(ucLedStartFlag==1) //启动和暂停两种状态循环切换
{
ucLedStartFlag=0;
}
else //启动和暂停两种状态循环切换
{
ucLedStartFlag=1;
}
ucWd1Part1Update=1; //及时更新显示系统的运行状态,是运行还是暂停.
uiVoiceCnt=const_voice_short; //按键声音触发,滴一声就停。
ucKeySec=0; //响应按键服务处理程序后,按键编号清零,避免一致触发
break;
}
}
void led_update() //LED更新函数
{
if(ucLed_update==1)
{
ucLed_update=0; //及时清零,让它产生只更新一次的效果,避免一直更新。
if(ucLed_dr1==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x01;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xfe;
}
if(ucLed_dr2==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x02;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xfd;
}
if(ucLed_dr3==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x04;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xfb;
}
if(ucLed_dr4==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x08;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xf7;
}
if(ucLed_dr5==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x10;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xef;
}
if(ucLed_dr6==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x20;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xdf;
}
if(ucLed_dr7==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x40;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xbf;
}
if(ucLed_dr8==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x80;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0x7f;
}
if(ucLed_dr9==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x01;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xfe;
}
if(ucLed_dr10==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x02;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xfd;
}
if(ucLed_dr11==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x04;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xfb;
}
if(ucLed_dr12==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x08;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xf7;
}
if(ucLed_dr13==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x10;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xef;
}
if(ucLed_dr14==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x20;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xdf;
}
if(ucLed_dr15==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x40;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xbf;
}
if(ucLed_dr16==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x80;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0x7f;
}
hc595_drive(ucLedStatus16_09,ucLedStatus08_01); //74HC595底层驱动函数
}
}
void display_drive()
{
//以下程序,如果加一些数组和移位的元素,还可以压缩容量。但是鸿哥追求的不是容量,而是清晰的讲解思路
switch(ucDisplayDriveStep)
{
case 1: //显示第1位
ucDigShowTemp=dig_table[ucDigShow1];
if(ucDigDot1==1)
{
ucDigShowTemp=ucDigShowTemp|0x80; //显示小数点
}
dig_hc595_drive(ucDigShowTemp,0xfe);
break;
case 2: //显示第2位
ucDigShowTemp=dig_table[ucDigShow2];
if(ucDigDot2==1)
{
ucDigShowTemp=ucDigShowTemp|0x80; //显示小数点
}
dig_hc595_drive(ucDigShowTemp,0xfd);
break;
case 3: //显示第3位
ucDigShowTemp=dig_table[ucDigShow3];
if(ucDigDot3==1)
{
ucDigShowTemp=ucDigShowTemp|0x80; //显示小数点
}
dig_hc595_drive(ucDigShowTemp,0xfb);
break;
case 4: //显示第4位
ucDigShowTemp=dig_table[ucDigShow4];
if(ucDigDot4==1)
{
ucDigShowTemp=ucDigShowTemp|0x80; //显示小数点
}
dig_hc595_drive(ucDigShowTemp,0xf7);
break;
case 5: //显示第5位
ucDigShowTemp=dig_table[ucDigShow5];
if(ucDigDot5==1)
{
ucDigShowTemp=ucDigShowTemp|0x80; //显示小数点
}
dig_hc595_drive(ucDigShowTemp,0xef);
break;
case 6: //显示第6位
ucDigShowTemp=dig_table[ucDigShow6];
if(ucDigDot6==1)
{
ucDigShowTemp=ucDigShowTemp|0x80; //显示小数点
}
dig_hc595_drive(ucDigShowTemp,0xdf);
break;
case 7: //显示第7位
ucDigShowTemp=dig_table[ucDigShow7];
if(ucDigDot7==1)
{
ucDigShowTemp=ucDigShowTemp|0x80; //显示小数点
}
dig_hc595_drive(ucDigShowTemp,0xbf);
break;
case 8: //显示第8位
ucDigShowTemp=dig_table[ucDigShow8];
if(ucDigDot8==1)
{
ucDigShowTemp=ucDigShowTemp|0x80; //显示小数点
}
dig_hc595_drive(ucDigShowTemp,0x7f);
break;
}
ucDisplayDriveStep++;
if(ucDisplayDriveStep>8) //扫描完8个数码管后,重新从第一个开始扫描
{
ucDisplayDriveStep=1;
}
}
//数码管的74HC595驱动函数
void dig_hc595_drive(unsigned char ucDigStatusTemp16_09,unsigned char ucDigStatusTemp08_01)
{
unsigned char i;
unsigned char ucTempData;
dig_hc595_sh_dr=0;
dig_hc595_st_dr=0;
ucTempData=ucDigStatusTemp16_09; //先送高8位
for(i=0;i<8;i++)
{
if(ucTempData>=0x80)dig_hc595_ds_dr=1;
else dig_hc595_ds_dr=0;
dig_hc595_sh_dr=0; //SH引脚的上升沿把数据送入寄存器
delay_short(1);
dig_hc595_sh_dr=1;
delay_short(1);
ucTempData=ucTempData<<1;
}
ucTempData=ucDigStatusTemp08_01; //再先送低8位
for(i=0;i<8;i++)
{
if(ucTempData>=0x80)dig_hc595_ds_dr=1;
else dig_hc595_ds_dr=0;
dig_hc595_sh_dr=0; //SH引脚的上升沿把数据送入寄存器
delay_short(1);
dig_hc595_sh_dr=1;
delay_short(1);
ucTempData=ucTempData<<1;
}
dig_hc595_st_dr=0; //ST引脚把两个寄存器的数据更新输出到74HC595的输出引脚上并且锁存起来
delay_short(1);
dig_hc595_st_dr=1;
delay_short(1);
dig_hc595_sh_dr=0; //拉低,抗干扰就增强
dig_hc595_st_dr=0;
dig_hc595_ds_dr=0;
}
//LED灯的74HC595驱动函数
void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01)
{
unsigned char i;
unsigned char ucTempData;
hc595_sh_dr=0;
hc595_st_dr=0;
ucTempData=ucLedStatusTemp16_09; //先送高8位
for(i=0;i<8;i++)
{
if(ucTempData>=0x80)hc595_ds_dr=1;
else hc595_ds_dr=0;
hc595_sh_dr=0; //SH引脚的上升沿把数据送入寄存器
delay_short(1);
hc595_sh_dr=1;
delay_short(1);
ucTempData=ucTempData<<1;
}
ucTempData=ucLedStatusTemp08_01; //再先送低8位
for(i=0;i<8;i++)
{
if(ucTempData>=0x80)hc595_ds_dr=1;
else hc595_ds_dr=0;
hc595_sh_dr=0; //SH引脚的上升沿把数据送入寄存器
delay_short(1);
hc595_sh_dr=1;
delay_short(1);
ucTempData=ucTempData<<1;
}
hc595_st_dr=0; //ST引脚把两个寄存器的数据更新输出到74HC595的输出引脚上并且锁存起来
delay_short(1);
hc595_st_dr=1;
delay_short(1);
hc595_sh_dr=0; //拉低,抗干扰就增强
hc595_st_dr=0;
hc595_ds_dr=0;
}
void led_flicker_09_16() //第9个至第16个LED的跑马灯程序,逐个亮并且每次只能亮一个.
{
if(ucLedStartFlag==1) //此变量为1时代表启动
{
switch(ucLedStep_09_16)
{
case 0:
if(uiTimeCnt_09_16>=uiSetTimeLevel_09_16) //时间到
{
uiTimeCnt_09_16=0; //时间计数器清零
if(ucLedDirFlag==0) //正方向
{
ucLed_dr16=0; //第16个灭
ucLed_dr9=1; //第9个亮
ucLed_update=1; //更新显示
ucLedStep_09_16=1; //切换到下一个步骤
}
else //反方向
{
ucLed_dr15=1; //第15个亮
ucLed_dr16=0; //第16个灭
ucLed_update=1; //更新显示
ucLedStep_09_16=7; //返回上一个步骤
}
}
break;
case 1:
if(uiTimeCnt_09_16>=uiSetTimeLevel_09_16) //时间到
{
uiTimeCnt_09_16=0; //时间计数器清零
if(ucLedDirFlag==0) //正方向
{
ucLed_dr9=0; //第9个灭
ucLed_dr10=1; //第10个亮
ucLed_update=1; //更新显示
ucLedStep_09_16=2; //切换到下一个步骤
}
else //反方向
{
ucLed_dr16=1; //第16个亮
ucLed_dr9=0; //第9个灭
ucLed_update=1; //更新显示
ucLedStep_09_16=0; //返回上一个步骤
}
}
break;
case 2:
if(uiTimeCnt_09_16>=uiSetTimeLevel_09_16) //时间到
{
uiTimeCnt_09_16=0; //时间计数器清零
if(ucLedDirFlag==0) //正方向
{
ucLed_dr10=0; //第10个灭
ucLed_dr11=1; //第11个亮
ucLed_update=1; //更新显示
ucLedStep_09_16=3; //切换到下一个步骤
}
else //反方向
{
ucLed_dr9=1; //第9个亮
ucLed_dr10=0; //第10个灭
ucLed_update=1; //更新显示
ucLedStep_09_16=1; //返回上一个步骤
}
}
break;
case 3:
if(uiTimeCnt_09_16>=uiSetTimeLevel_09_16) //时间到
{
uiTimeCnt_09_16=0; //时间计数器清零
if(ucLedDirFlag==0) //正方向
{
ucLed_dr11=0; //第11个灭
ucLed_dr12=1; //第12个亮
ucLed_update=1; //更新显示
ucLedStep_09_16=4; //切换到下一个步骤
}
else //反方向
{
ucLed_dr10=1; //第10个亮
ucLed_dr11=0; //第11个灭
ucLed_update=1; //更新显示
ucLedStep_09_16=2; //返回上一个步骤
}
}
break;
case 4:
if(uiTimeCnt_09_16>=uiSetTimeLevel_09_16) //时间到
{
uiTimeCnt_09_16=0; //时间计数器清零
if(ucLedDirFlag==0) //正方向
{
ucLed_dr12=0; //第12个灭
ucLed_dr13=1; //第13个亮
ucLed_update=1; //更新显示
ucLedStep_09_16=5; //切换到下一个步骤
}
else //反方向
{
ucLed_dr11=1; //第11个亮
ucLed_dr12=0; //第12个灭
ucLed_update=1; //更新显示
ucLedStep_09_16=3; //返回上一个步骤
}
}
break;
case 5:
if(uiTimeCnt_09_16>=uiSetTimeLevel_09_16) //时间到
{
uiTimeCnt_09_16=0; //时间计数器清零
if(ucLedDirFlag==0) //正方向
{
ucLed_dr13=0; //第13个灭
ucLed_dr14=1; //第14个亮
ucLed_update=1; //更新显示
ucLedStep_09_16=6; //切换到下一个步骤
}
else //反方向
{
ucLed_dr12=1; //第12个亮
ucLed_dr13=0; //第13个灭
ucLed_update=1; //更新显示
ucLedStep_09_16=4; //返回上一个步骤
}
}
break;
case 6:
if(uiTimeCnt_09_16>=uiSetTimeLevel_09_16) //时间到
{
uiTimeCnt_09_16=0; //时间计数器清零
if(ucLedDirFlag==0) //正方向
{
ucLed_dr14=0; //第14个灭
ucLed_dr15=1; //第15个亮
ucLed_update=1; //更新显示
ucLedStep_09_16=7; //切换到下一个步骤
}
else //反方向
{
ucLed_dr13=1; //第13个亮
ucLed_dr14=0; //第14个灭
ucLed_update=1; //更新显示
ucLedStep_09_16=5; //返回上一个步骤
}
}
break;
case 7:
if(uiTimeCnt_09_16>=uiSetTimeLevel_09_16) //时间到
{
uiTimeCnt_09_16=0; //时间计数器清零
if(ucLedDirFlag==0) //正方向
{
ucLed_dr15=0; //第15个灭
ucLed_dr16=1; //第16个亮
ucLed_update=1; //更新显示
ucLedStep_09_16=0; //返回到开始处,重新开始新的一次循环
}
else //反方向
{
ucLed_dr14=1; //第14个亮
ucLed_dr15=0; //第15个灭
ucLed_update=1; //更新显示
ucLedStep_09_16=6; //返回上一个步骤
}
}
break;
}
}
}
void T0_time() interrupt 1
{
TF0=0; //清除中断标志
TR0=0; //关中断
if(uiTimeCnt_09_16<0xffff) //设定这个条件,防止uiTimeCnt超范围。
{
if(ucLedStartFlag==1) //此变量为1时代表启动
{
uiTimeCnt_09_16++; //累加定时中断的次数,
}
}
key_scan(); //按键扫描函数
if(uiVoiceCnt!=0)
{
uiVoiceCnt--; //每次进入定时中断都自减1,直到等于零为止。才停止鸣叫
beep_dr=0; //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。
// beep_dr=1; //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。
}
else
{
; //此处多加一个空指令,想维持跟if括号语句的数量对称,都是两条指令。不加也可以。
beep_dr=1; //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。
// beep_dr=0; //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。
}
display_drive(); //数码管字模的驱动函数
TH0=0xfe; //重装初始值(65535-500)=65035=0xfe0b
TL0=0x0b;
TR0=1; //开中断
}
void delay_short(unsigned int uiDelayShort)
{
unsigned int i;
for(i=0;i<uiDelayShort;i++)
{
; //一个分号相当于执行一条空语句
}
}
void delay_long(unsigned int uiDelayLong)
{
unsigned int i;
unsigned int j;
for(i=0;i<uiDelayLong;i++)
{
for(j=0;j<500;j++) //内嵌循环的空指令数量
{
; //一个分号相当于执行一条空语句
}
}
}
void initial_myself() //第一区 初始化单片机
{
/* 注释二:
* 矩阵键盘也可以做独立按键,前提是把某一根公共输出线输出低电平,
* 模拟独立按键的触发地,本程序中,把key_gnd_dr输出低电平。
* 51学习板的S1就是本程序中用到的一个独立按键。
*/
key_gnd_dr=0; //模拟独立按键的地GND,因此必须一直输出低电平
led_dr=0; //关闭独立LED灯
beep_dr=1; //用PNP三极管控制蜂鸣器,输出高电平时不叫。
TMOD=0x01; //设置定时器0为工作方式1
TH0=0xfe; //重装初始值(65535-500)=65035=0xfe0b
TL0=0x0b;
}
void initial_peripheral() //第二区 初始化外围
{
ucDigDot8=0; //小数点全部不显示
ucDigDot7=0;
ucDigDot6=0;
ucDigDot5=0;
ucDigDot4=0;
ucDigDot3=0;
ucDigDot2=0;
ucDigDot1=0;
EA=1; //开总中断
ET0=1; //允许定时中断
TR0=1; //启动定时中断