EDA技术涉及面很广,内容丰富,从教学和实用的角度看,主要应掌握如下四个方面的内容:大规模可编程逻辑器件、硬件描述语言、软件开发工具、实验开发系统。EDA技术将迅速成为电子设计领域中的极其重要的组成部分。
引言
随着大规模集成电路技术和计算机技术的不断发展,在涉及通信、国防、航天、医学、工业自动化、计算机应用、仪器仪表等领域的电子系统设计工作中,EDA技术的含量正以惊人的速度上升;电子类的高新技术项目的开发也逾益依赖于EDA技术的应用。即使是普通的电子产品的开发,EDA技术常常使一些原来的技术瓶颈得以轻松突破,从而使产品的开发周期大为缩短、性能价格比大幅提高。不言而喻,EDA技术将迅速成为电子设计领域中的极其重要的组成部分。
1 EDA技术的含义及特点
EDA(ElectronicDesignAutomaTIon,电子系统设计自动化)技术是20世纪90年代初从CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAT(计算机辅助测试)和CAE(计算机辅助工程)的概念发展而来的。现代EDA技术就是以计算机为工具,在EDA软件平台上,根据硬件描述语言HDL完成的设计文件,能自动地完成用软件方式描述的电子系统到硬件系统的逻辑编译、逻辑化简、逻辑分割、逻辑综合及优化、布局布线、逻辑仿真,直至完成对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。设计者的工作仅限于利用软件的方式来完成对系统硬件功能的描述,在EDA工具的帮助下和应用相应的FPGA/CPLD器件,就可以得到最后的设计结果。尽管目标系统是硬件,但整个设计和修改过程如同完成软件设计一样方便和高效。可见,利用EDA技术进行电子系统的设计,具有以下几个特点:
1)用软件的方式设计硬件;
2)用软件方式设计的系统到硬件系统的转换是由有关的开发软件自动完成的;
3)采用自顶向下(top-down)的设计方法;
4)设计过程中可用有关软件进行各种仿真;
5)系统可现场编程,在线升级;
6)整个系统可集成在一个芯片上,体积小、功耗低、可靠性高。因此,EDA代表了当今电子设计技术的最新发展方向。
2 EDA技术的主要内容
EDA技术涉及面很广,内容丰富,从教学和实用的角度看,主要应掌握如下四个方面的内容:
1)大规模可编程逻辑器件;
2)硬件描述语言;
3)软件开发工具;
4)实验开发系统。其中,大规模可编程逻辑器件是利用EDA技术进行电子系统设计的载体,硬件描述语言是利用EDA技术进行电子系统设计的主要表达手段,软件开发工具是利用EDA技术进行电子系统设计的智能化的自动设计工具,实验开发系统则是利用EDA技术进行电子系统设计的下载工具及硬件验证工具。
2.1 大规模可编程逻辑器件
PLD(PorgrammableLogicDevice,可编程逻辑器件)是一种由用户编程以实现某种逻辑功能的新型逻辑器件。FPGA和CPLD分别是现场可编程门阵列和复杂可编程逻辑器件的简称,两者的功能基本相同,只是实现原理略有不同,所以我们有时可以忽略这两者的区别,统称为可编程逻辑器件或CPLD/FPGA。PLD是电子设计领域中最具活力和发展前途的一项技术,PLD能完成任何数字器件的功能。PLD如同一张白纸或是一堆积木,工程师可以通过传统的原理图输入法,或是硬件描述语言自由的设计一个数字系统,通过软件仿真,我们可以事先验证设计的正确性。在PCB完成以后,还可以利用PLD的在线修改能力,随时修改设计而不必改动硬件电路。使用PLD来开发数字电路,可以大大缩短设计时间,减少PCB面积,提高系统的可靠性。PLD的这些优点使得PLD技术在20世纪90年代以后得到飞速的发展,同时也大大推动了EDA软件和硬件描述语言(HDL)的进步。
2.2 硬件描述语言(HDL)
硬件描述语言(HDL)是相对于一般的计算机软件语言如C、Pascal而言的。HDL是用于设计硬件电子系统的计算机语言,它描述电子系统的逻辑功能、电路结构和连接方式。HDL具有与具体硬件电路无关和与设计平台无关的特性,并且具有良好的电路行为描述和系统描述的能力,并在语言易读性和层次化结构化设计方面,表现了强大的生命力和应用潜力。用HDL进行电子系统设计的一个很大的优点是设计者可以专心致力于其功能的实现,而不需要对不影响功能的与工艺有关的因素花费过多的时间和精力。
就FPGA/CPLD开发来说,比较常用和流行的HDL主要有VHDL,VerilogHDL,ABEL,AHDL,SystemVerilog和SysternC。其中VHDL,VerilogHDL比在现在EDA设计中使用最多,也拥有几乎所有的主流EDA工具的支持。而SysternVerilog比和SystetnC这两种HDL语言还处于完善过程中。现在,VHDL和Veir比作为IEEE的工业标准硬件描述语言,又得到众多EDA公司的支持,在电子工程领域,已成为事实上的通用硬件描述语言。有专家认为,在新的世纪中,VHDL与VerilogHDL语言将承担起大部分的数字系统设计任务。
2.3 软件开发工具
这类软件一般由PLD/FPGA芯片厂家提供,基本都可以完成所有的设计输入(原理图或HDL),仿真,综合,布线,下载等工作。
2.4 实验开发系统
提供芯片下载电路及EDA实验、开发的外围资源(类似于用于单片机开发的仿真器),供硬件验证用。一般包括:
1)实验或开发所需的各类基本信号发生模块,包括时钟、脉冲、高低电平等;
2)FPGA/CPLD输出信息显示模块,包括数据显示、发光管显示、声响指示等;
3)监控程序模块,提供“电路重构软配置“;
4)目标芯片适配座以及上面的FPGA/CPLD目标芯片和编程下载电路。
3 EDA技术的应用展望
3.1 EDA技术将广泛应用于高校电类专业的实践教学和科研工作中
与世界各知名高校相比,我国高等院校在EDA及微电子方面的教学和科研工作有着明显的差距,我们的学生现在做的课程实验普遍陈旧,动手能力较差。从某种意义上来说,EDA教学科研情况如何,代表着一个学校电类专业教学及科研水平的高低,而EDA教学科研工作开展起来后,还会对微电子类、计算机类学科产生积极的影响,从而带动各高校相应学科的同步发展。
3.2 EDA技术将广泛应用于专用集成电路和新产品的开发研制中
由于可编程逻辑器件性能价格比的不断提高,开发软件功能的不断完善,而且由于用EDA技术设计电子系统具有用软件的方式设计硬件;设计过程中可用有关软件进行各种仿真;系统可现场编程,在线升级;整个系统可集成在一个芯片上等特点,使其将广泛应用于专用集成电路和机械、电子、通信、航空航天、化工、矿产、生物、医学、军事等各个领域新产品的开发研制中。
3.3 EDA技术将广泛应用于传统机电设备的升级换代和技术改造
传统机电设备的电器控制系统,如果利用EDA技术进行重新设计或进行技术改造,不但设计周期短、设计成本低,而且将提高产品或设备的性能,缩小产品体积,提高产品的技术含量,提高产品的附加值。
3.4 EDA技术将在国防现代化建设中发挥重要的作用
EDA技术是电子设计领域的一场革命,目前正处于高速发展阶段,每年都有新的EDA工具问世,我国EDA技术的应用水平长期落后于发达国家,如果说用于民用的核心集成电路芯片还可以从国外买的到的话,那么军用集成电路就必须依靠自己的力量研制开发,因为用钱是买不到国防现代化的,特别是中国作为一支稳定世界的重要力量,更要走自主开发的道路。强大的现代国防必须建立在自主开发的基础上,因此,广大电子工程技术人员应该尽早掌握这一先进技术,这不仅是提高设计效率和我国电子工业在世界市场上生存、竟争与发展的需要,更是建立强大现代国防的需要。