CRC算法原理与实现代码
CRC 代数学的一般性算法
在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如 1100101 表示为
1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。
设编码前的原始信息多项式为P(x),P(x)的最高幂次加1等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。
发送方编码方法:将P(x)乘以xr(即对应的二进制码序列左移r位),再除以G(x),所得余式即为R(x)。用公式表示为
T(x)=xrP(x)+R(x)
接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。
举例来说,设信息码为1100,生成多项式为1011,即P(x)=x3+x2,G(x)=x3+x+1,计算CRC的过程为
xrP(x) x3(x3+x2) x6+x5 x
--------- = ------------ = --------- = (x3+x2+x) + ---------
G(x) x3+x+1 x3+x+1 x3+x+1
即 R(x)=x。注意到G(x)最高幂次r=3,得出CRC为010。
附:CRC算法的C程序
1) 求CRC码的运算采用模2运算, 所谓模2运算就是不带进位和借位, 因此加法和减法等价,实际上就是逻辑上的异或运算,
除法可以用多次模2减法实现.
2) 所谓CRC码, 就是把数据块左移16位, 然后除以0x11021所得到的余数(由CCITT推荐).
3) 据此写出以下的CRC的C程序. *ptr指向发送数据块的首地址, len是数据块以字节为单位的长度.
uint cal_crc(uchar *ptr, uchar len) {
uint crc;
uchar i;
crc=0;
while(len--!=0) {
for(i=0x80; i!=0; i/=2) {
if((crc&0x8000)!=0) {crc*=2; crc^=0x1021;}
else crc*=2;
if((*ptr&i)!=0) crc^=0x1021;
}
ptr++;
}
return(crc);
}
**************************************************************************
另一篇
CRC原理介绍
CRC的英文全称为Cyclic Redundancy Check(Code),中文名称为循环冗余校验(码)。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。
CRC计算与普通的除法计算有所不同。普通的除法计算是借位相减的,而CRC计算则是异或运算。任何一个除法运算都需要选取一个除数,在CRC运算中我们称之为poly,而宽度W就是poly最高位的位置。比如poly 1001的W是3,而不是4。注意最高位总是1,当你选定一个宽度,那么你只需要选择低W各位的值。假如我们想计算一个位串的CRC码,并要保证每一位都要被处理,因此我们需要在目标位串后面加上W个0。下面举例说明CRC算法的过程。
在此例中,我们假设位串为110101101。
Poly= 10011(宽度W = 4)
Bitstring + W zeros = 110101101 0000
10011/1101011010000/110000101 (我们不关心此运算的商)
10011||||||||
-----||||||||
10011|||||||
10011|||||||
-----|||||||
00001||||||
00000||||||
-----||||||
00010|||||
00000|||||
-----|||||
00101||||
00000||||
-----||||
01010|||
00000|||
-----|||
10100||
10011||
-----||
01110|
00000|
-----|
11100
10011
-----
1111 -> 余数 -> CRC!
计算过程总结如下:
1. 只有当位串的最高位为1,我们才将它与poly做XOR运算,否则我们只是将位串左移一位。
2. 异或运算的结果实质上是被操作位串与poly的低W位进行运算的结果,因为最高位总为0。