旋转编码器及其工作原理
旋转编码器是用来测量角度的装置。它分为单路输出和双路输出两种。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。
它将测量到的角度量转换为数字脉冲信号输出,用来检测被检对象的角位移、角速度、角加速度、线位移、线速度和线加速度等,因而,应用十分广泛。旋转编码器有绝对式和增量式两种。绝对式所测量到的角位置是绝对位置;而增量式所测量的是转动体角位移的累计量。
旋转编码器有一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。
由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。
信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。如单相联接,用于单方向计数,单方向测速。B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。A、A- 、B、B- 、Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。
为方便用户使用,旋转编码器信号有电压、NPN、PNP、T、D多种输出方式。不同输出方式的抗电磁干扰的能力也不同。因而,可根据使用的具体要求选择恰当输出形式的旋转编码器。本设计采用旋转编码器的单相联接输出方波。
旋转编码器与单片机的接口
由于工程实践和比赛的需要,我们研究开发了一种单片机与旋转编码器直接接口的方法。此方法就是直接将旋转编码器信号端与Freescale 的S12的单片机的输入捕捉/输出比较通道(IOC)极为简洁,由此构成的系统极为简单而可靠性很高。旋转编码器A相输出信号,故可使用单片机的IOC1(IOC0~IOC7任意一个都可以)与之相接。实际使用时,根据旋转编码器信号线的长度及电磁干扰的程度,可以在旋转编码器与单片机之间增加光电耦合器,或整形门电路,以抵抗干扰,调理旋转编码器的输入信号。我们在使用中采用了电压输出形式的旋转编码器,而且信号线很短,接口电路见图1。
图1 旋转编码器与单片机的接口电路
图1上拉电阻R是因为我们的编码器是NPN型集电极开路的。在这个接口方式中,将旋转编码器的A相与单片机的IOC1/PT1引脚相连,输出端需接1KΩ的上拉电阻,这个电阻是我们通过实验得到的结果,其空载输出脉冲频率为0~10KHz。
实物图见图2,我们采用齿轮啮合的原理将电机的齿轮和编码器的齿轮啮合,当电机旋转带动编码器的旋转,编码器就在接上拉电阻的信号线A上产生方波。
图2 智能车上旋转编码器的安装
接口程序
上述接口方法是利用了S12单片机的ECT模块的外部输入捕捉/输出比较工作方式。单片机也仅仅使用外部输入捕捉的来处理旋转编码器数据,只要将旋转编码器的A相(或B相)接至外部输入捕捉口IOC1(IOC0~IOC7任意一个都可以),程序如下:
用PT1(IOC1)通道作为速度脉冲信号输入,ECT模块初始化步骤如下:
1)设置TIOS寄存器,设置PT1通道为输入;
2)设置TCTL4寄存器,使得上升沿和下降沿(任何沿)均能得到捕捉;
3)设置ICOVW_NOVW寄存器,保护脉冲累加器的数据;
4)置位ICPAR_PA1EN,使能脉冲累加器。设置此寄存器之后,脉冲累加器开始计数;
5)通过读取PACN1寄存器,即可以获取当前的脉冲累加值。
初始化程序为:
void ECT_initial(void) //ECT初始化
{
DDRT_DDRT1=0; //置PT1(IOC1)脚为输入
TIOS_IOS0=0;
TIOS_IOS1=0; //通道1为输入捕捉
TCTL4=0b00001101; //通道1为任何沿捕捉
TSCR1_TEN=1; //计数器1使能
ICOVW_NOVW1 = 1; //保护
ICPAR_PA1EN = 1; //脉冲累加器使能
}
在每一控制周期开始时,MC9S12DG128读取脉冲累加器中的数值(average[5]),然后与前5个控制周期的脉冲累加器值求和(all_speed)再求平均值,做为当前速度反馈值(speed)。程序流程图如图3所示。
图3 直流电机测速流程图
计数速度的测试
采用以下两种方法对电机测速部分进行测试:
1)让智能车在赛道上行驶,每20ms将赛车当前速度值通过SCI串口发送到上位机上,并利用串口调试器进行监控。对正好在一圈当中赛车行驶的速度值进行累加求和,再乘以20ms,得到的总行驶距离约为27m,而模拟赛道总长约为26m,两者的相对误差不到4%。这说明,速度传感器测量基本准确。
2)直流电机空载运行时,改变脉冲捕捉方式,在上升沿、下降沿和任何沿捕捉方式间进行切换。不改变驱动电机占空比设置,理想情况下,单位时间内捕捉的脉冲数满足:上升沿获取下的脉冲数=下降沿获取下的脉冲数=任何沿获取下的脉冲数/2。在脉冲捕捉方式不变的情况下,改变PWM信号占空比(即改变速度给定值),检测的速度值与占空比近似成线性比例关系。以上间接说明脉冲检测的可靠性。