开关电源已经成为了我们电路设计当中的主角,甚至可以说已经成为了与行业发展密不可分的一部分。与传统线性电源相比,在某一输出功率点上线性电源的成本要高于开关电源,常见的开关电源可以分为两种,隔离与非隔离。
在本篇文章当中,我们将主要对隔离式开关电源的拓扑形式进行探讨。所以在下面的文章当中,如果没有任何特殊的说明,文中提及的电源将均指隔离电源。隔离电源按照结构形式不同,可分为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。按规格又可分为常规正激,包括单管正激,双管正激。半桥、桥式电路都属于正激电路。
正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。一般在小功率场合可选用反激式。稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。大功率输出,一般采用桥式电路,低压也可采用推挽电路。
反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。本人认为一般情况下是这样的,但也不能一概而论,PI公司的TOP芯片就可做到300瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。输出功率大小与输出电压高低有关。
反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。
脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。
输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。
PCB布线的一些原则印制板设计时,要考虑到干扰对系统的影响,将电路的模拟部分和数字部分的电路严格分开,对核心电路重点防护,将系统地线环绕,并布线尽可能粗,电源增加滤波电路,采用DC-DC隔离,信号采用光电隔离,设计隔离电源,分析容易产生干扰的部分(如时钟电路、通讯电路等)和容易被干扰的部分(如模拟采样电路等),对这两种类型的电路分别采取措施。对于干扰元件采取抑制措施,对敏感元件采取隔离和保护措施,并且将它们在空间和电气上拉开距离。在板级设计时,还要注意元器件放置要远离印制板边沿,这对防护空气放电是有利的。
随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为 0.5mm,可避免在焊接操作过程中出现“桥接”现象。,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。
最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。
方法一:上文提到的线路板开槽的方法适用于一些间距不够的场合,顺便提一下,该法也常用来作为保护放电间隙,常见于电视机显象管尾板和电源交流输入处。该法在模块电源中得到了广泛的应用,在灌封的条件下可获得很好的效果。
方法二:垫绝缘纸,可采用青壳纸、聚脂膜、聚四氟乙烯定向膜等绝缘材料。一般通用电源用青壳纸或聚脂膜垫在线路板于金属机壳间,这种材料有机械强度高,有一定抗潮湿的能力。聚四氟乙烯定向膜由于具有耐高温的特性在模块电源中得到广泛的应用。在元件和周围导体间也可垫绝缘薄膜来提高绝缘抗电性能。
最近几年,随着多层线路板在开关电源电路中应用,使得印制线路变压器成为可能,由于多层板,层间距较小,也可以充分利用变压器窗口截面,可在主线路板上再加一到两片由多层板组成的印制线圈达到利用窗口,降低线路电流密度的目的,由于采用印制线圈,减少了人工干预,变压器一致性好,平面结构,漏感低,偶合好。开启式磁芯,良好的散热条件。由于其具有诸多的优势,有利于大批量生产,所以得到广泛的应用。但研制开发初期投入较大,不适合小规模生产。
反激电源反射电压还有一个确定因素军用开关电源的反射电压还与一个参数有关,那就是输出电压,输出电压越低则变压器匝数比越大,变压器漏感越大,开关管承受电压越高,有可能击穿开关管、吸收电路消耗功率越大,有可能使吸收回路功率器件永久失效。在设计低压输出小功率反激电源的优化过程中必须小心处理,其处理方法有几个:
A、采用大一个功率等级的磁芯降低漏感,这样可提高低压反激电源的转换效率,降低损耗,减小输出纹波,提高多路输出电源的交差调整率,一般常见于家电用开关电源,如光碟机、DVB机顶盒等。
B、如果条件不允许加大磁芯,只能降低反射电压,减小占空比。降低反射电压可减小漏感但有可能使电源转换效率降低,这两者是一个矛盾,必须要有一个替代过程才能找到一个合适的点,在变压器替代实验过程中,可以检测变压器原边的反峰电压,尽量降低反峰电压脉冲的宽度,和幅度,可增加变换器的工作安全裕度。一般反射电压在110V时比较合适。
C、增强耦合,降低损耗,采用新的技术,和绕线工艺,变压器为满足安全规范会在原边和副边间采取绝缘措施,如垫绝缘胶带、加绝缘端空胶带。这些将影响变压器漏感性能,现实生产中可采用初级绕组包绕次级的绕法。或者次级用三重绝缘线绕制,取消初次级间的绝缘物,可以增强耦合,甚至可采用宽铜皮绕制。
反激电源变压器磁芯在工作在单向磁化状态,所以磁路需要开气隙,类似于脉动直流电感器。部分磁路通过空气缝隙耦合。为什么开气隙的原理本人理解为:由于功率铁氧体也具有近似于矩形的工作特性曲线(磁滞回线),在工作特性曲线上Y轴表示磁感应强度(B),现在的生产工艺一般饱和点在400mT以上,一般此值在设计中取值应该在200-300mT比较合适、X轴表示磁场强度(H)此值与磁化电流强度成比例关系。磁路开气隙相当于把磁体磁滞回线向X轴向倾斜,在同样的磁感应强度下,可承受更大的磁化电流,则相当于磁心储存更多的能量,此能量在开关管截止时通过变压器次级泻放到负载电路,反激电源磁芯开气隙有两个作用。
反激电源的变压器工作在单向磁化状态,不仅要通过磁耦合传递能量,还担负电压变换输入输出隔离的多重作用。所以气隙的处理需要非常小心,气隙太大可使漏感变大,磁滞损耗增加,铁损、铜损增大,影响电源的整机性能。气隙太小有可能使变压器磁芯饱和,导致电源损坏。
所谓反激电源的连续与断续模式是指变压器的工作状态,在满载状态变压器工作于能量完全传递,或不完全传递的工作模式。一般要根据工作环境进行设计,常规反激电源应该工作在连续模式,这样开关管、线路的损耗都比较小,而且可以减轻输入输出电容的工作应力,但是这也有一些例外。由于制造工艺特点,高反压二极管,反向恢复时间长,速度低,在电流连续状态,二极管是在有正向偏压时恢复,反向恢复时的能量损耗非常大,不利于变换器性能的提高,轻则降低转换效率,整流管严重发热,重则甚至烧毁整流管。由于在断续模式下,二极管是在零偏压情况下反向偏置,损耗可以降到一个比较低的水平。
反激开关电源变压器应工作在连续模式,那就要求比较大的绕组电感量,当然连续也是有一定程度的,过分追求绝对连续是不现实的,有可能需要很大的磁芯,非常多的线圈匝数,同时伴随着大的漏感和分布电容,可能得不偿失。那么如何确定这个参数呢,通过多次实践,及分析同行的设计,本人认为,在标称电压输入时,输出达到50%~60%变压器从断续,过渡到连续状态比较合适。
本篇文章从结构到电路板的设计,一路介绍了如何将开关电源进行合理的设计。并给出了了一些问题的解决方法。可以说包含了一个开关电源设计的全部过程,从设计和实际生产都进行了详细的介绍,对新手来说是不可多得的宝贵知识,希望大家能从本篇文章当中学习到合理设计开关电源的方法,并加以灵活运用。