产生信号的方法很多,可以采用函数发生器外接分立元件来实现,通过调节外接电容或电阻来设置输出信号频率。但输出信号受外部分立器件参数影响很大,且输出信号频率不能太高,同时无法实现频率步进调节。另外,采用FPGA可实现信号发生器的设计。但当输出高频信号时,需要高速D/A 来配合工作。本文采用数字直接合成技术,采用专用集成芯片AD9834作为信号产生模块,由ADSP21992来作为控制器来完成整个系统的设计。利用此方法不仅克服了外搭分立元件的干扰,而且AD9834内部有D/A转换器,缩小了信号源的体积,从而满足了测井仪器的要求。
信号源系统设计
系统总体框图如图1所示。系统选ADSP21992作为主控制器,通过键盘显示与控制芯片7279来接收功能设置和参数设置等信息,并将输出信号等信息送到数码管显示。同时,控制器将读取的按键信息转换成控制命令通过串行接口送给AD9834,由AD9834产生正弦信号,再经过信号调理,使信号达到设计的要求。
图1 信号源整体设计框图
ADSP21992控制DDS模块
本设计采用ADSP21992作为控制器件,它的最高工作时钟频率达到150MHz,提供一个独立的、标准的串行外设接口SPI,在此主要利用SPI总线向AD9834发送频率控制字,使AD9834产生符合要求的高频信号。串行外设接口SPI提供了一个4线、全双工串行总线的能力,本设计中SPI器件不需要接收数据,因此将它配置为主器件。SPI使用4个信号:主出从入(MOSI)、主入从出(MISO)、串行时钟(SCLK)、从选择(SPISS)。其中串行时钟频率最高可以是外设时钟频率的1/4。AD9834的电源电压在2.3V到 5.5V范围内可选,ADSP21992的电源电压为3.3V,所以在连接时无需电平转换。由于ADSP21992只向AD9834发送数据,不需要接收数据,因此要将ADSP21992的SPI设置为主器件。具体接口电路如图2所示。
图2 ADSP21992与AD9834的接口
DDS电路设计
DDS电路设计主要包括接口电路、DDS芯片及信号调理电路等,接口电路主要对DSP发送来的信号进行接收,接收DSP的控制命令,DDS根据收到的DSP控制命令及接收到的频率控制字,生成符合频率要求的信号并输出。由于DDS的输出为电流信号,因此,必须将电流信号通过负载转换为电压信号,将得到的电压信号进行调理即可得到所需的正弦信号。DDS电路设计的原理框图如图3所示。
图3 DDS电路设计的原理框图
DDS模块
直接数字合成(DDS)技术具有输出信号精度高、变频速度快、输出信号连续、控制方便及性价比高等诸多优点,因而适用于高频、高精度正弦信号发生器的设计。本系统选用AD9834,它主要由数控振荡器(NCO)、相位调制器、正弦查询表ROM和1个 10位D/A转换器组成。数控振荡器和相位调制器主要由2个频率选择寄存器、1个相位累加器、2个相位偏移寄存器和1个相位偏移加法器构成,它的最高工作频率可达50MHz。AD9834的输出频率f0由(1)式求得
其中fMCLK为AD9834的时钟频率; FREQREG为写入28位频率寄存器的值; fMCLK/228为频率分辨率。在本设计中选择fMCLK=16.384MHz,频率的分辨率为0.0061MHz,满足设计要求。根据公式(1)代入 fMCLK=16.384MHz, f0=20kHz,求得
将FREQREG的值反代入公式(1)得到AD9834的真实输出频率为
差分放大电路设计
差分放大环节采用AD公司生产的AD620芯片。AD620是低功耗、低噪声、高性能仪表放大器,通过外接一个电阻可以改变其增益(范围为1到10000)。可以很好地完成差分信号到单端信号的转换。其管脚如图4所示。其中RG端为外接电阻端,通过其调节电压增益;+IN、-IN分别为差分器输入的同相端和反相端;+Vs、-Vs分别为正负电源端;OUTPUT为信号输出端;REF为输出参考电源端。
图4 AD620管脚图
滤波电路
AD9834内部存在D/A转换器,信号通过D/A转换器输出。由D/A输出阶梯波的频谱分析可知,除了主频之外,频谱中还出现主频的倍频分量,这种高频分量可视为噪音。由于DDS技术含有上述噪声,所以必须在D/A转换器之后接滤波电路。这里采用二阶压控电压源低通滤波电路,其特点是输入阻抗高,输出阻抗低。二阶压控电压源低通滤波电路如图5所示。
图5 二阶压控低通滤波电路
本设计的截止频率为20kHz,选择C=0.047?F,经计算得R=12.305kΩ ,R1=16.651kΩ , RF=9.757kΩ 。利用上述的电路和参数验证,达到了阻带衰减速度快,相位呈线性的理想效果。
高频放大电路
为增大AD9834 输出信号幅值,采用高频运放AD811进行信号放大,它具有高速、高频、宽频带、低噪声等优异特性。但考虑到输出信号幅值随频率增大而减小,系统采用数控电位计X9C102 来实现可变增益放大,即依据输出信号频率的不同来改变数控电位计的值,以改变增益。可变增益放大器原理图如图6所示。
图6 可变增益放大器原理图
软件实现
软件流程图如图7所示,主要包括复位、初始化、写频率字和控制字等部分。初始化部分主要包括对 DSP的SPI串行口初始化及配置和对DDS的初始化。本设计把ADSP21992作为主机,通过设置SPICTL寄存器使DSP成为主机,选择 SPICTL寄存器里的TIMOD值为01,从而启动SPI传送数据。当启动数据发送时,DSP自动将TDBR寄存器的内容装入到发送移位寄存器;当数据传送结束时,自动将接受一位寄存器的内容装入到RDBR寄存器。在该系统设计中,AD9834采用串行控制比特位方式选择相位、频率寄存器;PIN/SW =0,选择控制字模式; FSEL=0,选择使用频率寄存器0;D13=0时,将28位的频率寄存器分成2个14位的寄存器工作,且频率字的高14 位和低14 位可以独立改变。SDATA、SCLK 和FSYNC 3个引脚向AD9834 中写数据和控制字。当FSYNC=0时,表示向AD9834 写入1个新字,并将在下1个SCLK的下降沿读入第1位,其余的位在随后SCLK 的下降沿读入,经过16个SCLK下降沿后,置FSYNC=1,实现了DSP对AD9834 的控制。
图7 程序主流程图
结语
本文采用ADSP21992和DDS 芯片AD9834 实现高频正弦信号发生器的设计,克服了传统方法中输出信号受外界元件参数影响的缺点,同时AD9834 内部集成有高速D/A,可直接输出正弦信号,避免外接D/A,简化系统硬件结构,提高了系统稳定性。AD9834 输出正弦信号精度高、稳定性好、输出信号连续、控制方便,将基于上述优点的信号发生器应用于三维感应测井中,可以提高系统性价比,达到三维感应测井对信号源的要求。同时,基于DDS技术的信号发生器将获得广泛的应用。