基于YOLOv3的红绿灯检测识别

来源:本站
导读:目前正在解读《基于YOLOv3的红绿灯检测识别》的相关信息,《基于YOLOv3的红绿灯检测识别》是由用户自行发布的知识型内容!下面请观看由(电工技术网 - www.9ddd.net)用户发布《基于YOLOv3的红绿灯检测识别》的详细说明。
简介:在实习的期间为公司写的红绿灯检测,基于YOLOv3的训练好的权重,不需要自己重新训练,只需要调用yolov3.weights,可以做到视频或图片中红绿灯的检测识别。

在实习的期间为公司写的红绿灯检测,基于YOLOv3的训练好的权重,不需要自己重新训练,只需要调用yolov3.weights,可以做到视频或图片中红绿灯的检测识别。

自动检测识别效果

1.灯检测

基于YOLOv3的红绿灯检测识别

2.绿灯检测

基于YOLOv3的红绿灯检测识别

python源码

"""Class definition of YOLO_v3 style detection model on image and video"""import colorsysimport osfrom timeit import default_timer as timerimport cv2import numpy as npfrom keras import backend as Kfrom keras.models import load_modelfrom keras.layers import Inputfrom PIL import Image, ImageFont, ImageDrawfrom yolo3.model import yolo_eval, yolo_body, tiny_yolo_bodyfrom yolo3.utils import letterbox_imageimport osfrom keras.utils import multi_gpu_modelimport collectionsclass YOLO(object):  _defaults = {    "model_path": ''model_data/yolo.h5'',    "anchors_path": ''model_data/yolo_anchors.txt'',    "classes_path": ''model_data/coco_classes.txt'',    "score" : 0.3,    "iou" : 0.35,    "model_image_size" : (416, 416),    "gpu_num" : 1,  }  @classmethod  def get_defaults(cls, n):    if n in cls._defaults:      return cls._defaults[n]    else:      return "Unrecognized attribute name ''" + n + "''"  def __init__(self, **kwargs):    self.__dict__.update(self._defaults) # set up default values    self.__dict__.update(kwargs) # and update with user overrides    self.class_names = self._get_class()    self.anchors = self._get_anchors()    self.sess = K.get_session()    self.boxes, self.scores, self.classes = self.generate()  def _get_class(self):    classes_path = os.path.expanduser(self.classes_path)    with open(classes_path) as f:      class_names = f.readlines()    class_names = [c.strip() for c in class_names]    return class_names  def _get_anchors(self):    anchors_path = os.path.expanduser(self.anchors_path)    with open(anchors_path) as f:      anchors = f.readline()    anchors = [float(x) for x in anchors.split('','')]    return np.array(anchors).reshape(-1, 2)  def generate(self):    model_path = os.path.expanduser(self.model_path)    assert model_path.endswith(''.h5''), ''Keras model or weights must be a .h5 file.''    # Load model, or construct model and load weights.    num_anchors = len(self.anchors)    num_classes = len(self.class_names)    is_tiny_version = num_anchors==6 # default setting    try:      self.yolo_model = load_model(model_path, compile=False)    except:      self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes)         if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)      self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match    else:      assert self.yolo_model.layers[-1].output_shape[-1] ==         num_anchors/len(self.yolo_model.output) * (num_classes + 5),         ''Mismatch between model and given anchor and class sizes''    print(''{} model, anchors, and classes loaded.''.format(model_path))    # Generate colors for drawing bounding boxes.    hsv_tuples = [(x / len(self.class_names), 1., 1.)           for x in range(len(self.class_names))]    self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))    self.colors = list(      map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),        self.colors))    np.random.seed(10101) # Fixed seed for consistent colors across runs.    np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.    np.random.seed(None) # Reset seed to default.    # Generate output tensor targets for filtered bounding boxes.    self.input_image_shape = K.placeholder(shape=(2, ))    if self.gpu_num>=2:      self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)    boxes, scores, classes = yolo_, self.input_image_shape,        score_threshold=self.score, iou_threshold=self.iou)    return boxes, scores, classes  def getColorList(self):    dict = collections.defaultdict(list)    # 红色    lower_red = np.array([156, 43, 46])    upper_red = np.array([180, 255, 255])    color_list = []    color_list.append(lower_red)    color_list.append(upper_red)    dict[''red''] = color_list    # 红色2    lower_red = np.array([0, 43, 46])    upper_red = np.array([10, 255, 255])    color_list = []    color_list.append(lower_red)    color_list.append(upper_red)    dict[''red2''] = color_list    # 橙色    lower_orange = np.array([11, 43, 46])    upper_orange = np.array([25, 255, 255])    color_list = []    color_list.append(lower_orange)    color_list.append(upper_orange)    dict[''orange''] = color_list    # 黄色    lower_yellow = np.array([26, 43, 46])    upper_yellow = np.array([34, 255, 255])    color_list = []    color_list.append(lower_yellow)    color_list.append(upper_yellow)    dict[''yellow''] = color_list    # 绿色    lower_green = np.array([35, 43, 46])    upper_green = np.array([77, 255, 255])    color_list = []    color_list.append(lower_green)    color_list.append(upper_green)    dict[''green''] = color_list    return dict  def get_color(self,frame):    print(''go in get_color'')    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)    maxsum = -100    color = None    color_dict = self.getColorList()    score = 0    type = ''black''    for d in color_dict:      mask = cv2.inRange(hsv, color_dict[d][0], color_dict[d][1])      # print(cv2.inRange(hsv, color_dict[d][0], color_dict[d][1]))      #cv2.imwrite(''images/triffic/'' + f + d + ''.jpg'', mask)      binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]      binary = cv2.dilate(binary, None, iterations=2)      img, cnts, hiera = cv2.findContours(binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)      sum = 0      for c in cnts:        sum += cv2.contourArea(c)      if sum > maxsum:        maxsum = sum        color = d      if sum > score:        score = sum        type = d    return type  def detect_image(self, image,path):    print(''class'',self._get_class())    start = timer()    if self.model_image_size != (None, None):      assert self.model_image_size[0]%32 == 0, ''Multiples of 32 required''      assert self.model_image_size[1]%32 == 0, ''Multiples of 32 required''      boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))    else:      new_image_size = (image.width - (image.width % 32),               image.height - (image.height % 32))      boxed_image = letterbox_image(image, new_image_size)    image_data = np.array(boxed_image, dtype=''float32'')    print(image_data.shape)    image_data /= 255.    image_data = np.expand_dims(image_data, 0) # Add batch dimension.    out_boxes, out_scores, out_classes = self.sess.run(      [self.boxes, self.scores, self.classes],      feed_dict={        self.yolo_model.input: image_data,        self.input_image_shape: [image.size[1], image.size[0]],        K.learning_phase(): 0      })    print(''Found {} boxes for {}''.format(len(out_boxes), ''img''))    font = ImageFont.truetype(font=''font/FiraMono-Medium.otf'',          size=np.floor(3e-2 * image.size[1] + 0.5).astype(''int32''))    thickness = (image.size[0] + image.size[1]) // 300    thickness = 5    print(''thickness'',thickness)    print(''out_classes'',out_classes)    my_class = [''traffic light'']    imgcv = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)    for i, c in reversed(list(enumerate(out_classes))):      predicted_class = self.class_names[c]      print(''predicted_class'',predicted_class)      if predicted_class not in my_class:        continue      box = out_boxes[i]      score = out_scores[i]      label = ''{} {:.2f}''.format(predicted_class, score)      draw = ImageDraw.Draw(image)      label_size = draw.textsize(label, font)      top, left, bottom, right = box      top = max(0, np.floor(top + 0.5).astype(''int32''))      left = max(0, np.floor(left + 0.5).astype(''int32''))      bottom = min(image.size[1], np.floor(bottom + 0.5).astype(''int32''))      right = min(image.size[0], np.floor(right + 0.5).astype(''int32''))      print(label, (left, top), (right, bottom))      img2 = imgcv[top:bottom, left:right]      color = self.get_color(img2)      cv2.imwrite(''images/triffic/''+path+str(i) + ''.jpg'', img2)      if color== ''red'' or color == ''red2'':        cv2.rectangle(imgcv, (left, top), (right, bottom), color=(0, 0, 255),               lineType=2, thickness=8)        cv2.putText(imgcv, ''{0} {1:.2f}''.format(color, score),              (left, top - 15),              cv2.FONT_HERSHEY_SIMPLEX,              1.2, (0, 0, 255), 4,              cv2.LINE_AA)      elif color == ''green'':        cv2.rectangle(imgcv, (left, top), (right, bottom), color=(0, 255, 0),               lineType=2, thickness=8)        cv2.putText(imgcv, ''{0} {1:.2f}''.format(color, score),              (left, top - 15),              cv2.FONT_HERSHEY_SIMPLEX,              1.2, (0, 255, 0), 4,              cv2.LINE_AA)      else:        cv2.rectangle(imgcv, (left, top), (right, bottom), color=(255, 0, 0),               lineType=2, thickness=8)        cv2.putText(imgcv, ''{0} {1:.2f}''.format(color, score),              (left, top - 15),              cv2.FONT_HERSHEY_SIMPLEX,              1.2, (255, 0, 0), 4,              cv2.LINE_AA)      print(imgcv.shape)    end = timer()    print(end - start)    return imgcv  def close_session(self):    self.sess.close()def detect_img(yolo, img_path,fname):  img = Image.open(img_path)  import time  t1 = time.time()  img = yolo.detect_image(img,fname)  print(''time: {}''.format(time.time() - t1))  return img  #yolo.close_session()if __name__ == ''__main__'':  yolo = YOLO()  video_full_path = ''images/triffic.mp4''  output = ''images/res.avi''  cap = cv2.VideoCapture(video_full_path)  cap.set(cv2.CAP_PROP_POS_FRAMES, 1) # 设置要获取的帧号  fourcc = cv2.VideoWriter_fourcc(*''XVID'')  fps = cap.get(cv2.CAP_PROP_FPS)  size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))  out = cv2.VideoWriter(output, fourcc, fps, size)  ret = True  count = 0  while ret :    count+=1    ret, frame = cap.read()    if not ret :      print(''结束'')      break    image = Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB))    image = yolo.detect_image(image,''pic'')    out.write(image)  cap.release()  out.release()  cv2.destroyAllWindows()

提醒:《基于YOLOv3的红绿灯检测识别》最后刷新时间 2024-03-14 01:00:24,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《基于YOLOv3的红绿灯检测识别》该内容的真实性请自行鉴别。