LC滤波器要与远离DCDC高频电流环路的分析与优化设计

来源:本站
导读:目前正在解读《LC滤波器要与远离DCDC高频电流环路的分析与优化设计》的相关信息,《LC滤波器要与远离DCDC高频电流环路的分析与优化设计》是由用户自行发布的知识型内容!下面请观看由(电工技术网 - www.9ddd.net)用户发布《LC滤波器要与远离DCDC高频电流环路的分析与优化设计》的详细说明。
简介:现代电力电子系统通常在开关模式下工作,产生了较大的电磁干扰(EMI),EMI问题一直是电力电子工程师头疼的问题,解决EMI问题是一项既困难又耗时的工作,本文将介绍EMI是如何产生、传播以及如何优化解决。

现代电力电子系统通常在开关模式下工作,产生了较大的电磁干扰(EMI),EMI问题一直是电力电子工程师头疼的问题,解决EMI问题是一项既困难又耗时的工作,本文将介绍EMI是如何产生、传播以及如何优化解决。

首先,让咱们先了解常用的缩略语:

EMC(Electromagnetic Compatibility):电磁兼容性

EMI(Electromagnetic Interference):电磁干扰

EMS(Electromagnetic Susceptibility):电磁抗扰度

IEC(International Electrotechnical Commission):国际电工委员会

FCC(Federal Communication Commission):美国联邦通信委员会

CISPR:国际无线电干扰特别委员会

CE:字母“CE”是法文句子的缩写,意指欧盟

CCC(China Compulsory Certificate):中国强制性产品认证制度,又称3C认证。

电磁兼容性及应用

电磁兼容性(EMC)是指设备或系统在电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰能力,电磁兼容(EMC)包含电磁干扰(EMI)和电磁抗扰度(EMS)。其包含的测试项目如图1所示。

LC滤波器要与远离DCDC高频电流环路的分析与优化设计

图1 EMC测试项

电磁干扰限制可分为两个基本应用范畴:

A类:适用于商业或工业装置环境,相应限制较为轻松;

B类:适用于家用或住宅装置,相应限制较为严格。

B类限制约比A类限制低10dB,即发射振幅之比约为1:3(20×log(3)≈10dB)。市场销售的产品还需要满足一些重要的安规标准。在许多国家,电磁兼容标准和安规标准统一用一个区域认证标志来表示,如CE标志即欧洲认证标志,CCC标志即中国强制认证标志。该标志表示产品符合电磁兼容标准和安规标准。

历史上普遍接受的国际电磁干扰标准是CISPR-22,美国的电磁干扰标准是FCC,CISPR-22与FCC有所不同,但一般来说如果电源符合CISPR-22标准,那么它也符合FCC标准。总之CISPR-22标准已经成为全世界都遵守的基本标准。汽车上的电磁干扰标准是CISPR-25,相对CISPR22来说CISPR-25标准限制值更低并且额外对FM频段做了很严的限制要求。具体传导测试限制要求如图2所示。

LC滤波器要与远离DCDC高频电流环路的分析与优化设计

图2 传导测试标准

如图3所示电磁干扰的辐射测试普遍采用天线接收法测试,相比于CISPR22来说CISPR25额外增加了150KHz ~ 30MHz的辐射测试,这部分测试频段覆盖了DCDC的工作频率范围,是辐射测试的难点。另外CISPR-25辐射测试采用1M法天线距离更近,测试接收的信号更强。

LC滤波器要与远离DCDC高频电流环路的分析与优化设计

图3 辐射测试标准

对于设备来说DCDC开关电源是最常见的噪声源,而通常又不易受干扰,所以DCDC的EMC问题主要就是EMI问题。以Buck电源为例,DCDC芯片开关过程中产生电压和电流的变化,包含了较快的di/dt和dv/dt噪声分量,其开关噪声不仅包含开关次和倍频频率段的噪声,另外其开关速度越低,高频噪声分量衰减越大。噪声分为差模噪声和共模噪声,差模噪声是LN线之间的电位差,共模噪声是待测零部件的LN线和参考地之间的电位差。DCDC电源EMI主要来源于电流和电压跳变,通过共模和差模的形式耦合到接收器上。

如图4所示是Buck开关电源的噪声产生和耦合路径,从传导路径来说开关节点产生的差模干扰通过输入电容滤波后会直接传到输入端,共模干扰通过开关节点对地的耦合再通过LISN端检测到。从辐射的路径来看主要是差模的功率电流回路产生的,当然共模干扰也会产生部分辐射干扰。因此在设计电路时减小功率开关电流回路对传导辐射干扰有很大的帮助。

LC滤波器要与远离DCDC高频电流环路的分析与优化设计

图4 DCDC噪声源及耦合路径

电磁干扰优化措施

既然有了上面对EMI产生的原因分析,我们就可以按照如下几点对EMI进行优化:

输入端增加EMI滤波器

EMI滤波器可以抑制流经LISN的差模和共模电流,这在传导测试中尤其关键,根据对噪声的大小的衰减比例可以计算出EMI滤波器的参数大小。常见的EMI滤波器参数如图5所示。

LC滤波器要与远离DCDC高频电流环路的分析与优化设计

图5 常见EMI滤波器设计参数

输入输出电容位置要靠近芯片放置

在功率开关回路中di/dt环路会产生磁场,并且磁场强度与电流和环路面积成正比关系。减小环路面积能大幅度减小对外辐射。如图6所示通过将输入电容C2靠近芯片可以显著减小磁场辐射程度。

LC滤波器要与远离DCDC高频电流环路的分析与优化设计

图6 输入电容位置对EMI的影响

LC滤波器要与远离DCDC高频电流环路

所有的LC滤波器都是以电感结束,并且要远离DCDC的高频环路。防止电流环路的近场磁场效应对输入滤波器的影响。

对称设计芯片和对称电容设计

如图7所示,对称电容设计能明显抵消磁场,如果电容集成到芯片内部的话对传导和辐射的高频干扰都能起到极大的抑制作用,MPS的MPQ4491M就是一款高度集成的车载充电芯片方案,内部集成了电容,具有良好的EMI性能。

LC滤波器要与远离DCDC高频电流环路的分析与优化设计

图7 对称电容设计

改用一体成型电感

环形电感的漏磁较大,体积也比较大,对大地也有比较大的耦合电容,因此其对外的辐射更大,如图8所示将环形电感替换为贴片电感后整体的EMI就会下降很多。

LC滤波器要与远离DCDC高频电流环路的分析与优化设计

图8 环形电感对EMI的影响

提醒:《LC滤波器要与远离DCDC高频电流环路的分析与优化设计》最后刷新时间 2024-03-14 01:09:29,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《LC滤波器要与远离DCDC高频电流环路的分析与优化设计》该内容的真实性请自行鉴别。