一、前言
作为一名在读本科生,自己不能奢望从课堂上学到太多实践的知识。但我还是看到身边有很多热衷于电子设计的同学,虽然自己在电子线路设计的学习过程中一路磕磕绊绊,但一直有很多热心的学长老师帮助,在这个过程中自己也总结了一些学习方法,希望能给热爱电子线路设计的同学们一点点启发。(本文参加了TI公司的博文比赛,觉得还行的话,希望大家帮顶一下、回复一个,谢谢大家,我会更努力的:-))
二、完成一项电子设计作品
07年的暑假,我观看了学长参加全国大学生电子设计竞赛的全过程,当时的A题“音频信号分析”给我留下了很深刻的印象。经过一年的学习自己的知识也差不多可已完成这个任务了,于是开始着手设计和制作。下面将详细介绍自己制作的全过程。
2.1 任务分析
题目的任务是计、制作一个可分析音频信号频率成分,并可测量正弦信号失真度的仪器。模拟部分的要求是:(1)输入阻抗:50Ω (2)输入信号电压范围(峰-峰值):100mV~5V;(3)输入信号包含的频率成分范围:200Hz~10kHz。数字部分的要求是:(1)20Hz分辨力的频谱分析;(2)信号各分量功率测量;(3)信号失真度测量。
经过分析,模拟部分需要制作一个AGC(自动增益控制)放大器电路,而数字部分主要是进行FFT算法和功率、失真度算法的实现。
对于数字部分,由于作者手上有eZDSP2812的开发板,所以作者决定采用TI公司的DSP TMS2812作为整机运算控制核心。
对于模拟部分,经过分析他只要由一下几部分构成:
由于TMS2812的片上ADC动态输入范围为0~3V,而题目要求的输入范围为100mV~5V交流信号,因此需要对输入信号峰值进行检测,然后根据结果对判断信号进行放大或衰减,并将信号电平由0V提升到1.5V。为了防止高频信号被采样,在ADC前增加滤波器,考虑到频谱分析的缘故,应采用具有带内最大平坦度的巴特沃思滤波器。
经过以上分析,已经可以得到如下放大电路的整体框图。
细心的朋友可能会问,为什么峰值检测放在程放之后呢,是否可以直接接在信号输入端。这个问题作者在方案确定时经过了一番细致考虑,理论上两种方法都可以,但是要注意到,峰值检测电路对毫伏级的输入信号检测精度很有限,实测误差会大于10%,而经过放大后再进行峰值检测有利于提高峰值检测精度,从而更有效的选择程放的放大倍数。
2.2 借助TI网上选型工具确定各部分方案
记得TI模拟器械技术部首席科学家Tim·Kalthoff先生在武汉大学的湖北省电赛颁奖典礼上说过:“TI的网站是一所很好的模拟大学。”确实如此,TI的网站有许多帮助设计人员完成选型、方案设计、方案验证的工具和向导,这对于想作者一样的初学者是很有帮助的。
程控增益放大器
作者决定从程控增益放大器部分开始确定设计方案,对于本部分,和很多人一样,作者一开始想到两种方案:1.OPA + 模拟多路复用器;2.集成程控增益放大器。
怀着这两种方案,作者像往常一样,先登陆TI中国的官方网站http://focus.ti.com.cn/cn/tihome/docs/homepage.tsp,然后下载了应用指南《音频指南》并仔细阅读,作者最先发现的是一款集成程放PGA2310非常适合我的设计,增益范围+31.5dB to ?95.5dB,供电电压最大为 ±15V ,输入输出范围接近供电电压。于是我很兴奋地登陆TI中国样片中心的网站开始申请教育样片(TI公司有大学合作计划)。
令人感到沮丧的是,样片缺货。于是,作者选择了第一种方案,这种方案的优点是OPA较容易获得,另外作者手上有MAXIM公司的一款性能很不错的多路复用器MAX308。
接下来要做的就是OPA选型了,作者首先阅读了以前下载的《TI放大器和数据转换器选择指南》,同时浏览TI运算放大器产品线,突然作者发现了TI的网上音频选择工具,作者按照提示操作,选择了总谐波失真和噪声最小的产品,TI给我推荐了以下几种产品:
作者手上有OPA228和OPA4131,我首先考虑的是GBW,为了满足题目要求(10kHz,100mV),并留有余量GBW应该大于1MHz,OPA228是 MHz而OPA4131是4 MHz,都可以。别的指标对于本设计而言,二者差不多。值得一提的是,OPA228是OP07系列的升级版,而OPA4131则是FET输入型,输入阻抗非常大。另外,考虑到节省电路板空间的问题,作者最后选用了四运放OPA4131。
到此为止,程控增益放大器的初步方案已经完成。
电平提升电路
对于这部分,作者也想到了两种方案:1.直流电平取自电源电压。这种方法优点是无需增加额外电路,缺点是电源纹波会影响频谱分析的精度。2.通过电压基准源+电压加法器。这种方法的优点是噪声纹波小,缺点是需要增加电路复杂度。
考虑到采用电阻分压的方法会在信号中引入电源的纹波,影响频谱分析精度,所以作者选择了第二种方案,并决定采用手上的低噪声电压基准源AD780提供3V直流电平,并通过OPA228衰减0.5倍得到1.5V直流电平。
峰值检测电路
作者记得模电课上老师说过峰值检测电路(PKD)的大致结构,由二极管和低漏电容组成。在实际应用中,PKD输入输出需要加缓冲,作者这部分的设计参考了AD公司OP177和TI公司OPA128的数据手册中提供的电路图:
这两种方案本质上是一样的思路,输入为理想二极管接法,输出为电压跟随器,特别的地方是采用场效应管或晶体管代替二极管,这样的好处是方向漏电流小,因为他们的方向漏电流都在pA级别,而二极管方向漏电流是nA级的。另外,电容的选择也尤为重要,低漏电流是首要考虑,作者手上有低漏的CBB电容,故选择CBB作为储存电荷的电容器。输出的运放最好选用偏置电流小的运放,FET输入型的是首选。
总体而言,TI的方案是AD方案的改进型,场效应管前的二极管可以进一步防止方向漏电流。由于经验不足,作者当时决定留到仿真时才决定二者中选择哪一种。