伴随数组、计数排序的运用

来源:本站
导读:目前正在解读《伴随数组、计数排序的运用》的相关信息,《伴随数组、计数排序的运用》是由用户自行发布的知识型内容!下面请观看由(电工技术网 - www.9ddd.net)用户发布《伴随数组、计数排序的运用》的详细说明。
简介: 一个星期没有写了,今天还是留点时间写一写自己的博客,周六去考试了趋势科技,感受到了自己在软件设计方面还存在的知识缺陷,测试、网络安全等方面都是空白,其他的相对来说要好一点,记得第一题是关于unicode方面的选择题,还有很多就是局部分配空间,返回无效指针的题目,总之感觉考得还是蛮基础,但是又设置了不少的陷阱,我很多回来又想了想,还是觉得自己知识面太少了。

一个星期没有写了,今天还是留点时间写一写自己的博客,周六去考试了趋势科技,感受到了自己在软件设计方面还存在的知识缺陷,测试、网络安全等方面都是空白,其他的相对来说要好一点,今天还没有收到面试通知应该是打了一次酱油了,不够收获还是蛮多的,记得第一题是关于unicode方面的选择题,还有很多就是局部分配空间,返回无效指针的题目,总之感觉考得还是蛮基础,但是又设置了不少的陷阱,我很多回来又想了想,还是觉得自己知识面太少了,对于一个非科班出生的人,确实还是需要花一定的时间恶补一下。

总结两个题目吧,其中一个是多玩的题目:给你100万个数据,数据的值在0~65535之间 用最快的速度排序 ?

这样的数据虽然算不上是海量数据,但是我在Windows下面反正是不能跑成功,每次都是栈溢出。换到linux环境下,顺利的完成了数据的处理。首先分析一下自己的思路,很简单,如果采用快速排序算法应该是能够完成排序的,时间复杂度应该是在O(N*logN),但是问题是题目是要求最快的速度排序,我认为应该是考虑一些时间排序算法,首先我就想到了桶排序,计数排序之类的,最后我选择了计数排序,实际上由于数据的值在0~65535之间,所以肯定存在大量的数据是重复的,这个值实际上就满足了计数排序的一些限制条件,采用hashmap的思想,统计相同值的个数,然后采用计数排序的思想,重新赋值数组即可。这时候的算法应该是非常快速的,时间复杂度应该为O(N),这种方法也存在一定的问题,引入了额外的内存空间,和多玩要求的最快最少的内存空间存在一定的差别,但是时间上应该是比较快啦。

我的实现结合了hashmap的思想、计数排序的思想,实现代码如下所示:

#define BUFSIZE 65536

#define DATASIZE 1000000

void countsort(int *a, int size)

{

int i = 0 , j = 0;

int countbuf[BUFSIZE] = {0};

for(i = 0; i < BUFSIZE; ++ i)

countbuf[i] = 0;

for(i = 0; i < size; ++ i)

countbuf[a[i]]++;

for(i = 1; i < BUFSIZE; ++ i)

{

countbuf[i] += countbuf[i - 1];

}

for(i = 0; i < countbuf[0]; ++ i)

a[i] = 0;

for(i = 1; i < BUFSIZE; ++ i)

{

for(j = countbuf[i-1]; j < countbuf[i]; ++ j)

a[j] = i;

}

}

另一个就是伴随数组的运用,伴随数组主要是保存了数组中数据的原来下标位置,这样的存在形式可以避免在多次的修改中导致数组原有信息的丢失,特别是在一些保存历史信息的运用中,伴随数组是非常有用的。比如需要查找数组局部区域的第K个最小的值,这时候完全可以采用对局部区域进行排序,找出第k个值,但是这也存在一个问题,排序以后原有信息的丢失,如果重新选择新的局部区域,上面的排序就使得下面的操作毫无意义。当然也可以采用分配K个内存的方法,这种方法就是创建一个大小为K的数据空间,遍历数据,将满足选定区间的数插入到新数组中,遍历完数据以后就实现了数据的查找,这种方法对于少量排序的问题是可以接受的,但是如果新创建的数据区间非常的大,对一个新数组的排序等操作也是非常吓人的。

采用伴随数组可以避免多次的排序操作,只需要一次排序就能完成不同区间的第K个最小值的查找操作,具体的实现如下:

首先创建一个节点数据结构,存在两个成员,分别保存数据值和数值的下标,其中下标就表示了数据的历史信息,可以用来还原数组等操作。遍历数组创建节点数组。

其次,对节点数组进行排序,排序通常采用快速排序的方法实现。

最后,遍历节点数组值,当节点数组值的下标在所选择的区间时就将K减1,当K == 0时,这时候对应的数组值就是我们需要查找的局部区域的第K个最小值。

对于其他区间的实现方法只需要对最后一步进行修改,而不再需要数组的排序等操作,这种实现方法就能加快对其他局部区间数组的查找操作。这种方法的优点就是即保存了数组的原有信息,又避免了多次查找中的多次排序问题,采用一次排序的问题解决了不同区间的数据查找操作。

总结如上,我的代码实现如下,其中需要注意的是struct中的<操作符重载是必须的,且必须将其设置为const成员函数,不然编译不能通过,必须重载是因为排序过程中需要比较对象的大小:

#include<iostream>

#include<vector>

#include<time.h>

#include<assert.h>

#include<algorithm>

using namespace std;

template<typename T>

struct node

{

T num;

int index;

/*该操作符重载是必须的,因为排序过程需要比较数值大小*/

bool operator<(const node<T> &rhs)const

{

return num < rhs.num;

}

friend ostream &

operator<<(ostream &os, const node<T> &_node)

{

os << _node.num << " " << _node.index;

return os;

}

};

template<typename T>

node<T>& zoomsort(vector<node<T> > &array,

int left, int right, int k)

{

int i = 0;

assert((left <= right)

&& (right - left >= k - 1));

/*基于库函数的排序算法*/

sort(array.begin(), array.end());

/*查找过程*/

for(i = 0; i < array.size(); ++ i)

{

if(array[i].index >= left

&& array[i].index <= right)

-- k;

if(k == 0)

break;

}

if(k == 0)

return array[i];

}

int main()

{

int i = 0;

int num = 0;

node<int> anode;

vector<node<int> > array;

for(i = 0; i < 10; ++ i)

{

cin >> num;

anode.num = num;

anode.index = i;

array.push_back(anode);

}

for(i = 0; i < 10; ++ i)

cout << array[i].num << "t";

cout << endl;

cout << "the 3rd num in 2 to 6: ";

cout << zoomsort(array, 2,6,3) << endl;

cout << "the 4th num in 1 to 7: ";

cout << zoomsort(array, 1,7,4) << endl;

cout << "the 4th num in 3 to 9: ";

cout << zoomsort(array, 3,9,4) << endl;

return 0;

}

虽然,找工作是挺打击自己的,但是我相信会逐渐好起来的。

提醒:《伴随数组、计数排序的运用》最后刷新时间 2024-03-14 01:02:08,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《伴随数组、计数排序的运用》该内容的真实性请自行鉴别。