开关三极管分类_开关三极管的使用误区

来源:本站
导读:目前正在解读《开关三极管分类_开关三极管的使用误区》的相关信息,《开关三极管分类_开关三极管的使用误区》是由用户自行发布的知识型内容!下面请观看由(电工技术网 - www.9ddd.net)用户发布《开关三极管分类_开关三极管的使用误区》的详细说明。

开关三极管分类

开关三极管因功率的不同可分为小功率开关管、中功率和大功率开关管。常用小功率开关管有3AKl-5、3AKll-15、3AKl9-3AK20、3AK20-3AK22、3CKl-4、3CK7、3CK8、3DK2-4、3DK7-9。

常用的高反压、大功率开关管有:2JD1556、2SD1887、2SD1455、2SD1553、2SD1497、2SD1433、2SD1431、2SD1403、2SD850等,它们的最高反压都在1500V以上。

开关三极管的使用误区

数字电路设计中,常常需要把数字信号经过开关扩流器件来驱动蜂鸣器、LED、继电器等需要交大电流的器件,用得最多的就是三极管。然而在使用过程中,如果设计不当,三极管就无法工作在正常开关状态,无法达到预期效果。

开关三极管分类_开关三极管的使用误区

如图(a)所示,用NPN三极管,蜂鸣器连接到三极管的集电极,驱动信号是常见的3.3V或者5V

TTL电平,高电平导通,电阻按照经验值取4.7KΩ,三极管导通时假设高电平为5v,基极电流为:

Ib=(5-0.7)V&pide;4.7KΩ=0.9mA

它可以使三极管完全饱和。

如图(b)所示,用NPN三极管,同样把蜂鸣器连接到三极管集电极,不同的是是还用的驱动信号是5V的TTL电平。

以上两个电路都可以正常工作,只要PWM驱动信号工作在合适的频率下,蜂鸣器(有源)就会发出最大的声音。

开关三极管分类_开关三极管的使用误区

图2和图1对比,最大的区别就是被驱动器件连接到了三极管的发射机。

如图(c)所示,三极管导通时假设高电平是5V,基极电流为

Ib=(5-0.7-UL)V&pide;4.7KΩ

其中,UL为被驱动器件上的压降。可以看出,同样取积极电阻为4.7KΩ,流过基极的电流会比图1中的(a)电路电流要小,小多少需要看UL为多少:如果UL较大,那么相应的Ib也就会很小,很有可能导致三极管无法工作在饱和状态,使得驱动器件无法动作。有人认为把基极电阻调小就好了,可是被驱动器件的压降是很难获知的,有些被驱动器件的压降是变动的,这样一来,基极电阻就很难选择合适:阻值选的太大,会导致驱动失败;阻值选择太小,损耗又变大。所以,不在万不得已的情况下,不建议用图2的两种电路。

开关三极管分类_开关三极管的使用误区

如图3,驱动信号为3.3V电平,而被驱动器件导通电压需要5V。在3.3V单片机电路中,若不小心,就容易设计出这两种电路。

如图(e)所示,这是典型的“发射极正偏,集电极反偏”的放大电路,或者叫做射极输出器。当PWM信号为3.3V时,三极管发射极电压为3.3V-0.7V=2.6V,无法达到期望的5V。

如图(f)所示,这是一个失败的电路。首先,这个电路无法断开,当驱动信号PWM为3.3V高电平是,Ube=5V-3.3V=1.7V仍然可以使三极管导通,于是电路无法断开。在这里,有人会说用过这个电路,他没有问题,而且单片机的电压也是3.3V。笔者个人认为这个人用的是OD(开漏)驱动方式,而且是真正的OD或者是5V可以容忍的OD,比如STM32的很多IO都可以设置为OD门驱动方式,输出高电平,信号就变成了高阻态,流过基极电流为0,三极管可以有效截止,这时候图(f)依然有效。

开关三极管分类_开关三极管的使用误区

综上几种电路,得到上图两种最优电路。与图(1)不同,图(4)在基极和发射机之间增加了一个100KΩ的电阻,这个电阻有一定的作用,可以让三极管有一个已知的默认状态。当输入信号被除去的时候,三极管还处于截止状态。从安全性方面考虑,多加这个电阻还是很有必要的,或者说可以让三极管工作在更好的开关状态。

提醒:《开关三极管分类_开关三极管的使用误区》最后刷新时间 2024-03-14 00:52:56,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《开关三极管分类_开关三极管的使用误区》该内容的真实性请自行鉴别。