浅谈电子工程师面临的难题及解决方案设计

来源:本站
导读:目前正在解读《浅谈电子工程师面临的难题及解决方案设计》的相关信息,《浅谈电子工程师面临的难题及解决方案设计》是由用户自行发布的知识型内容!下面请观看由(电工技术网 - www.9ddd.net)用户发布《浅谈电子工程师面临的难题及解决方案设计》的详细说明。
简介:本文主要介绍电子工程师面临的难题及解决方案设计。

EMI / 抗干扰设计

现有的抑制措施大多从消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径出发,这确是抑制干扰的一种行之有效的办法,但很少有人涉及直接控制干扰源,消除干扰,或提高受扰设备的抗扰能力,殊不知后者还有许多发展的空间

EMI 是当今许多设计人员所面临的一项重大挑战。如果不能顺利通过 EMI 测试,则将导致项目成本显着增加和进度迟缓,因此高水平的工程师会在设计的早期寻求减低 EMI 的方法。因为开关稳压器具有高能量效率,所以越来越多人采用,对EMI 的影响也在加重。一种能有助于抑制与开关电源相关之 EMI 的简单方式是采用一个多相扩频时钟。使用诸如 LTC6909 等器件至少能够以三种方式提供帮助。首先,硅振荡器 (例如:LTC6909) 可用于将稳压器的开关频率和最终的基本 EMI 频率设定在某个敏感的频段之外。其次,LTC6909 的多个输出相位可用于在不同的相位对不同的稳压器进行开关操作,因而降低了会产生 EMI 的峰值开关电流。此项技术不允许辐射能量在任何接收器的频段内长时间地停留,从而改善了EMI。

低噪声电路设计

低噪声放大器, 噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。

噪声是高准确度系统的大敌,同时,它也是一个涉及范围很大的话题。

1. 高速数据转换电路中的放大器噪声

假如选择了一个具有足够高分辨率的 ADC,则量化噪声将不再是主导因素。设计人员因而可把其注意力转移至其他的噪声源,量化噪声是指解调后信号和原传递信号的差异是因幅度和时间的量化而产生的,这种失真称为量化失真。因为这种失真和杂乱的干扰一样,听起来和元件产生的热噪声相似的噪声。包括放大器噪声、电压基准噪声和时钟相位噪声等,所有这些噪声源均会限制总体系统准确度。当选择放大器时,频率范围是重要因素。带宽越宽,则噪声越大,实际上说来,放大器的噪声设定了最小可分辨信号,而失真则决定了可以准确测量的最大信号幅度。噪声与失真一起确定了动态范围。所以,对于高分辨率 ADC 应用而言,选择一款低噪声和低失真的 ADC 驱动器至关紧要。

2. 电压基准噪声

分辨率和准确度方面的限制因素常常是电压基准稳定性和噪声。近来,有两个因素使电压基准噪声变得更加重要了。第一个因素是系统电源电压呈日渐降低之势。在较低的工作电压条件下,噪声层变得更为明显。第二个因素是,随着具有高初始准确度和低漂移特性的新型基准面市、以及系统设计人员能够更加容易地对系统因素进行校准,基准稳定性问题已经变得不那么棘手了。然而,噪声是无法予以校准的。为了帮助设计人员满足那些采用较低电源电压系统的苛刻要求,凌力尔特公司推出了具无与伦比的 0.25ppm 峰至峰噪声水平的 LT6655。LT6655 可提供 7 种输出电压选项 (从 1.25V 至 5V),是仪表及测试设备所需的高分辨率 ADC 和 DAC 的理想同伴芯片。该器件的宽工作温度范围和卓越的稳定性使其成为汽车及其他严酷环境中的绝佳选择。

3. 电机控制电流测量中的共模噪声

用于闭环 PWM控制的准确电流测量 (例如:监视 H 桥电机所需的电流测量) 是一项极具挑战性的工作。人们优选的方法通常是采用一个与电机相串联的并联电阻器。当开关断开和闭合时,共模电压会非常突然地从一个电平变至另一个电平,并伴随有由于流过电机的电流发生变化所导致的大反馈电压 (L di/dt),因而使情况更加复杂。应对这种共模噪声的方法之一是对电流测量进行同步处理,以使测量在电路实现稳定之后进行。但在实际操作中这种做法会很难实施。诸如LT1999等新产品简化了这一测量难题。LT1999 具有一个 96dB (在 DC) 和 80dB (在100kHz) 的输入共模抑制比。其阶跃响应为 1μs,而带宽为2MHz。这款器件专为严苛环境而设计,拥有高 ESD 耐受能力、低 EMI 敏感性和 一个 -55°C 至 150°C 的规定工作温度范围,从而使其非常适合于汽车及工业应用。

应用放大电路实现放大的装置称为放大器。它的核心是电子有源器件,如电子管、晶体管等。为了实现放大,必须给放大器提供能量。

运算放大器(简称“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。

运算放大器是极为通用的单元式部件,运算放大器简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出的高增电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的 输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。但是并不存在诸如“理想运算放大器”之类的东西。设计人员必须了解其设计目标,并选择一款具有期望规格组合的放大器。对于很多应用而言,一个重要的发展趋势就是“以更少组件处理更多工作”。在电子系统中,这通常意味着比先前产品更快的速度、更高的准确度和更低的功耗。LTC6252/ 3 / 4、LTC624 / 5 / 6 和LTC6255/ 6 / 7 系列运算放大器提供了一种新的速度-功率效率水平,并保持了低噪声和高准确度。这些产品运用了一种先进的 SiGe 工艺,以实现以下的优异性能:LTC6252 具有 20MHz GBW 和仅 3.5mA 的消耗电流,LTC6246 拥有 180MHz 带宽且消耗电流仅为 1mA,而 LTC6255 则具备 6.5MHz GBW 和区区 65μA 的消耗电流。这些产品还可提供纤巧型封装,并在 -40°C 至 125°C 的温度范围内拥有绝佳的 AC 和 DC 规格指标,从而使设计人员能够以低功耗来实现优越的性能。

提醒:《浅谈电子工程师面临的难题及解决方案设计》最后刷新时间 2024-03-14 01:02:19,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《浅谈电子工程师面临的难题及解决方案设计》该内容的真实性请自行鉴别。