HDL语言概述 -- EDN电子设计技术

来源:本站
导读:目前正在解读《HDL语言概述 -- EDN电子设计技术》的相关信息,《HDL语言概述 -- EDN电子设计技术》是由用户自行发布的知识型内容!下面请观看由(电工技术网 - www.9ddd.net)用户发布《HDL语言概述 -- EDN电子设计技术》的详细说明。
简介:HDL语言概述

HDL语言概述

HDL概述

随着EDA技术的发展,使用硬件语言设计PLD/FPGA成为一种趋势。目前最主要的硬件描述语言是VHDL和Verilog HDL。 VHDL发展的较早,语法严格,而Verilog HDL是在C语言的基础上发展起来的一种硬件描述语言,语法较自由。 VHDL和Verilog HDL两者相比,VHDL的书写规则比Verilog烦琐一些,但verilog自由的语法也容易让少数初学者出错。 国外电子专业很多会在本科阶段教授VHDL,在研究生阶段教授verilog。从国内来看,VHDL的参考书很多,便于查找资料,而Verilog HDL的参考书相对较少,这给学习Verilog HDL带来一些困难。 从EDA技术的发展上看,已出现用于CPLD/FPGA设计的硬件C语言编译软件,虽然还不成熟,应用极少,但它有可能会成为继VHDL和Verilog之后,设计大规模CPLD/FPGA的又一种手段。

VHDL语言简介:

VHDL的英文全名是Very-High-Speed Integrated Circuit HardwareDescription Language,诞生于1982年。1987年底,VHDL被IEEE和美国国防部确认为标准硬件描述语言 。自IEEE公布了VHDL的标准版本,IEEE-1076(简称87版)之后,各EDA公司相继推出了自己的VHDL设计环境,或宣布自己的设计工具可以和VHDL接口。此后VHDL在电子设计领域得到了广泛的接受,并逐步取代了原有的非标准的硬件描述语言。1993年,IEEE对VHDL进行了修订,从更高的抽象层次和系统描述能力上扩展VHDL的内容,公布了新版本的VHDL,即IEEE标准的1076-1993版本,(简称93版)。现在,VHDL和Verilog作为IEEE的工业标准硬件描述语言,又得到众多EDA公司的支持,在电子工程领域,已成为事实上的通用硬件描述语言。有专家认为,在新的世纪中,VHDL于Verilog语言将承担起大部分的数字系统设计任务。

VHDL主要用于描述数字系统的结构,行为,功能和接口。除了含有许多具有硬件特征的语句外,VHDL的语言形式和描述风格与句法是十分类似于一般的计算机高级语言。VHDL的程序结构特点是将一项工程设计,或称设计实体(可以是一个元件,一个电路模块或一个系统)分成外部(或称可是部分,及端口)和内部(或称不可视部分),既涉及实体的内部功能和算法完成部分。在对一个设计实体定义了外部界面后,一旦其内部开发完成后,其他的设计就可以直接调用这个实体。这种将设计实体分成内外部分的概念是VHDL系统设计的基本点。应用VHDL进行工程设计的优点是多方面的。

(1)与其他的硬件描述语言相比,VHDL具有更强的行为描述能力,从而决定了他成为系统设计领域最佳的硬件描述语言。强大的行为描述能力是避开具体的器件结构,从逻辑行为上描述和设计大规模电子系统的重要保证。

(2)VHDL丰富的仿真语句和库函数,使得在任何大系统的设计早期就能查验设计系统的功能可行性,随时可对设计进行仿真模拟。

(3)VHDL语句的行为描述能力和程序结构决定了他具有支持大规模设计的分解和已有设计的再利用功能。符合市场需求的大规模系统高效,

高速的完成必须有多人甚至多个代发组共同并行工作才能实现。(4)对于用VHDL完成的一个确定的设计,可以利用EDA工具进行逻辑综合和优化,并自动的把VHDL描述设计转变成门级网表。

(5)VHDL对设计的描述具有相对独立性,设计者可以不懂硬件的结构,也不必管理最终设计实现的目标器件是什么,而进行独立的设计。

附:一个简单的VHDL的例子:(12位寄存器)

--- VHDL Example

-- User-Defined Macrofunction

ENTITY reg12 IS

PORT(

d : IN BIT_VECTOR(11 DOWNTO 0);

clk : IN BIT;

q : OUT BIT_VECTOR(11 DOWNTO 0));

END reg12;

ARCHITECTURE a OF reg12 IS

BEGIN

PROCESS

BEGIN

WAIT UNTIL clk = '1';

q <= d;

END PROCESS;

END a;

VerilogHDL简介

任何新生事物的产生都有它的历史沿革,早期的硬件描述语言是以一种高级语言为基础,加上一些特殊的约定而产生的,目的是为了实现RTL级仿真,用以验证设计的正确性,而不必像在传统的手工设计过程中那样,必须等到完成样机后才能进行实测和调试。

Verilog HDL就是在用用最广泛的C语言的基础上发展起来的一种件描述语言,它是由GDA(Gateway Design Automation)公司的PhilMoorby在1983年末首创的,最初只设计了一个仿真与验证工具,之后又陆续开发了相关的故障模拟与时序分析工具。1985年Moorby推出它的第三个商用仿真器Verilog-XL,获得了巨大的成功,从而使得Verilog HDL迅速得到推广应用。1989年CADENCE公司收购了GDA公司,使得VerilogHDL成为了该公司的独家专利。1990年CADENCE公司公开发表了Verilog HDL,并成立LVI组织以促进Verilog HDL成为IEEE标准,即IEEE Standard 1364-1995.

Verilog HDL的最大特点就是易学易用,如果有C语言的编程经验,可以在一个较短的时间内很快的学习和掌握,因而可以把Verilog HDL内容安排在与ASIC设计等相关课程内部进行讲授,由于HDL语言本身是专门面向硬件与系统设计的,这样的安排可以使学习者同时获得设计实际电路的经验。与之相比,VHDL的学习要困难一些。但Verilog HDL较自由的语法,也容易造成初学者犯一些错误,这一点要注意。

一个简单的VerilogHDL的例子:(12位寄存器)

// Verilog Example

// User-Defined Macrofunction

module reg12 ( d, clk, q);

`define size 11

input [`size:0]d;

input clk;

output [`size:0]q;

reg [`size:0]q;

always @(posedge clk)

q = d;

endmodule

其他VDL语言简介:

ABEL-HDL

这是一种早期的硬件描述语言。在可编程逻辑器件的设计中,可方便准确的描述所设计的电路逻辑功能。他支持逻辑电路的多种表达形式,其中包括逻辑方程,真值表和状态图。ABEL语言和Verilog语言同属一种描述级别,但ABEL语言的特性受支持的程度远远不如 Verilog。 Verilog是从集成电路设计中发展而来,语言较为成熟,支持的EDA工具很多。而ABEL语言从早期可编程逻辑器件(PLD)的设计中发展而来。ABEL-HDL被广泛用于各种可编程逻辑器件的逻辑功能设计,由于其语言描述的独立性,因而适用于各种不同规模的可编程器的设计。如DOS版的ABEL3.0软件可对包括GAL期间进行全方位的逻辑描述和设计,而在诸如Lattice的ispEXPERT,DATAIO的Synario,Vantis的Design-Direct,Xilinx的FOUNDATION和WEBPACK等EDA软件中,ABEL-HDL同样可用于较大规模的FPGA/CPLD器件功能设计。ABEL-HDL还能对所设计的逻辑系统进行功能仿真。ABEL-HDL的设计也能通过标准格式设计转换文件转换成其他设计环境,如VHDL.Verilog-HDL等。从长远来看,VHDL和VerilogHDL的运用会比ABEL-HDL多的多,ABEL-HDL只会在较小的范围内继续存在

AHDL

(Altera HHDL) 是ALTERA公司发明的HDL,特点是非常易学易用,学过高级语言的人可以在很短的时间(如几周)内掌握AHDL。它的缺点是移植性不好,通常只用于ALTERA自己的开发系统。

一个简单的AHDL的例子(七段LED译码器):

SUBDESIGN 7segment

(

i[3..0] : INPUT;

a, b, c, d, e, f, g : OUTPUT;

)

BEGIN

TABLE

i[3..0] => a, b, c, d, e, f, g;

H"0" => 1, 1, 1, 1, 1, 1, 0;

H"1" => 0, 1, 1, 0, 0, 0, 0;

H"2" => 1, 1, 0, 1, 1, 0, 1;

H"3" => 1, 1, 1, 1, 0, 0, 1;

H"4" => 0, 1, 1, 0, 0, 1, 1;

H"5" => 1, 0, 1, 1, 0, 1, 1;

H"6" => 1, 0, 1, 1, 1, 1, 1;

H"7" => 1, 1, 1, 0, 0, 0, 0;

H"8" => 1, 1, 1, 1, 1, 1, 1;

H"9" => 1, 1, 1, 1, 0, 1, 1;

H"A" => 1, 1, 1, 0, 1, 1, 1;

H"B" => 0, 0, 1, 1, 1, 1, 1;

H"C" => 1, 0, 0, 1, 1, 1, 0;

H"D" => 0, 1, 1, 1, 1, 0, 1;

H"E" => 1, 0, 0, 1, 1, 1, 1;

H"F" => 1, 0, 0, 0, 1, 1, 1;

END TABLE;

END;

选择VHDL还是verilog HDL?

这是一个初学者最常见的问题。其实两种语言的差别并不大,他们的描述能力也是类似的。掌握其中一种语言以后,可以通过短期的学习,较快的学会另一种语言。 选择何种语言主要还是看周围人群的使用习惯,这样可以方便日后的学习交流。 当然,如果您是集成电路(ASIC)设计人员,则必须首先掌握verilog,因为在IC设计领域,90%以上的公司都是采用verilog进行IC设计。对于PLD/FPGA设计者而言,两种语言可以自由选择。

学习HDL的几点重要提示

1.了解HDL的可综合性问题:

HDL有两种用途:系统仿真和硬件实现。 如果程序只用于仿真,那么几乎所有的语法和编程方法都可以使用。 但如果我们的程序是用于硬件实现(例如:用于FPGA设计),那么我们就必须保证程序“可综合”(程序的功能可以用硬件电路实现)。不可综合的HDL语句在软件综合时将被忽略或者报错。 我们应当牢记一点:“所有的HDL描述都可以用于仿真,但不是所有的HDL描述都能用硬件实现。”

2. 用硬件电路设计思想来编写HDL:

学好HDL的关键是充分理解HDL语句和硬件电路的关系。 编写HDL,就是在描述一个电路,我们写完一段程序以后,应当对生成的电路有一些大体上的了解, 而不能用纯软件的设计思路来编写硬件描述语言。 要做到这一点,需要我们多实践,多思考,多总结。

3.语法掌握贵在精,不在多

30%的基本HDL语句就可以完成95%以上的电路设计,很多生僻的语句并不能被所有的综合软件所支持,在程序移植或者更换软件平台时,容易产生兼容性问题,也不利于其他人阅读和修改。建议多用心钻研常用语句,理解这些语句的硬件含义,这比多掌握几个新语法要有用的多。

HDL与原理图输入法的关系

HDL和传统的原理图输入方法的关系就好比是高级语言和汇编语言的关系。HDL的可移植性好,使用方便,但效率不如原理图;原理图输入的可控性好,效率高,比较直观,但设计大规模CPLD/FPGA时显得很烦琐,移植性差。在真正的PLD/FPGA设计中,通常建议采用原理图和HDL结合的方法来设计,适合用原理图的地方就用原理图,适合用HDL的地方就用HDL,并没有强制的规定。在最短的时间内,用自己最熟悉的工具设计出高效,稳定,符合设计要求的电路才是我们的最终目的。

HDL开发流程

用VHDL/VerilogHD语言开发PLD/FPGA的完整流程为:

1.文本编辑:用任何文本编辑器都可以进行,也可以用专用的HDL编辑环境。通常VHDL文件保存为.vhd文件,Verilog文件保存为.v文件

2.功能仿真:将文件调入HDL仿真软件进行功能仿真,检查逻辑功能是否正确(也叫前仿真,对简单的设计可以跳过这一步,只在布线完成以后,进行时序仿真)

3.逻辑综合:将源文件调入逻辑综合软件进行综合,即把语言综合成最简的布尔表达式和信号的连接关系。逻辑综合软件会生成.edf(edif)的EDA工业标准文件。

4.布局布线:将.edf文件调入PLD厂家提供的软件中进行布线,即把设计好的逻辑安放到PLD/FPGA内

5.时序仿真:需要利用在布局布线中获得的精确参数,用仿真软件验证电路的时序。(也叫后仿真)

6.编程下载:确认仿真无误后,将文件下载到芯片中

通常以上过程可以都在PLD/FPGA厂家提供的开发工具(如MAXPLUSII,Foundation,ISE)中完成,但许多集成的PLD开发软件只支持VHDL/Verilog的子集,可能造成少数语法不能编译,如果采用专用HDL工具分开执行,效果会更好,否则这么多出售专用HDL开发工具的公司就没有存在的理由了。

提醒:《HDL语言概述 -- EDN电子设计技术》最后刷新时间 2024-03-14 01:05:13,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《HDL语言概述 -- EDN电子设计技术》该内容的真实性请自行鉴别。