双向可控硅触发电路图大全

来源:本站
导读:目前正在解读《双向可控硅触发电路图大全》的相关信息,《双向可控硅触发电路图大全》是由用户自行发布的知识型内容!下面请观看由(电工技术网 - www.9ddd.net)用户发布《双向可控硅触发电路图大全》的详细说明。

双向可控硅触发电路图一:

为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V,脉冲宽度应大于20us.图中BT为变压器,TPL521-2为光电耦合器,起隔离作用。当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51的外部中断0的输入引脚,以引起中断。在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。过零检测电路A、B两点电压输出波形如图2所示。

双向可控硅触发电路图大全

双向可控硅触发电路图大全

双向可控硅触发电路图二:

电路如图3所示,图中MOC3061为光电耦合双向可控硅驱动器,也属于光电耦合器的一种,用来驱动双向可控硅BCR并且起到隔离的作用,R6为触发限流电阻,R7为BCR门极电阻,防止误触发,提高抗干扰能力。当单片机80C51的P1.0引脚输出负脉冲信号时T2导通,MOC3061导通,触发BCR导通,接通交流负载。另外,若双向可控硅接感性交流负载时,由于电源电压超前负载电流一个相位角,因此,当负载电流为零时,电源电压为反向电压,加上感性负载自感电动势el作用,使得双向可控硅承受的电压值远远超过电源电压。虽然双向可控硅反向导通,但容易击穿,故必须使双向可控硅能承受这种反向电压。一般在双向可控硅两极间并联一个RC阻容吸收电路,实现双向可控硅过电压保护,图3中的C2、R8为RC阻容吸收电路。

双向可控硅触发电路图大全

双向可控硅触发电路图三:

双向可控硅触发电路图大全

此时无论是打开开关、和关闭开关(驱动MOC306或者不驱动MOC3061)可控硅都是导通的,即不能关闭可控硅,百般纠结和查看资料后才发现G极和T1之间的关系,安照这个电路接的话,不管J3开路时,G极的电压等于T2的电压,当交流电流过双向可控硅时,G极与T1之间总存在一个电压差,即T1与T2之间的电压差,这个电压差就导通了可控硅,所以双向可控硅虽然没有正、负极的区别,却有T1、T2的区别。

双向可控硅触发电路图四:

如下图所示,当电网电压小于220V时,双向可控硅SCR2控制极上的电压也随电网电压减小而降低,致使VD2导通角小,C1端电压上升,从而使双向可控硅SCRl控制极电压升高,使输出电压上升。反之,输出电压下降,达到稳压。

双向可控硅触发电路图大全

双向可控硅触发电路图五:

所示,左侧为两个30K/2W的电阻,这样限制输入电流为:220V/60K=3.67mA,由于该路仅仅是为了提取交流信号,因此小电流输入即可。整流桥芯片采用小功率(2W)的KBP210,之后接入一个光耦(P521),这样如图1整流后信号电压值超过光耦前段二极管的导通电压时,即产生一次脉冲,光耦右侧为一上拉电路,VCC为单片机供电电压:+3.3V。光耦三极管导通时,输出低电平,关闭时输出高电平。

双向可控硅触发电路图大全

双向可控硅触发电路图六:

VDI、VD2、Cl与C2组成简单的电容降压半被整流电源,通电后C2两端能获得约12V左右的直流电压供光控电路用电。VT、VD3、R2、R3与RP构成光控电路,白天光敏二极管VD3受光照射呈低电阻,VT基极电位下降,所以VT截止,可控硅vs得不到触发电压而处于关断状态,灯H不亮。夜间,VD3无光线照射呈高电阻,VT的基极电位上升,VT导通,就向vs注入正向触发电流,故vs立即开通,灯H全压点亮。调节电位器RP能调节三极管VT的基极电位,从而能对光控灵敏度进行调整。

双向可控硅触发电路图大全

提醒:《双向可控硅触发电路图大全》最后刷新时间 2024-03-14 00:52:50,本站为公益型个人网站,仅供个人学习和记录信息,不进行任何商业性质的盈利。如果内容、图片资源失效或内容涉及侵权,请反馈至,我们会及时处理。本站只保证内容的可读性,无法保证真实性,《双向可控硅触发电路图大全》该内容的真实性请自行鉴别。