超声波的工作原理
超声波是频率高于20000Hz的机械波,由于超声波频率高、波长短,因此具有良好的方向性和穿透能力,且由于超声波能量大,方便检测,因此可以用来实现无损检测。具体工过程分为以下几个过程:
1. 声源产生超声波,采用一定的方式使超声波进入试件;
2. 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;
3. 改变后的超声波通过检测设备被接收,并可对其进行处理和分析;
4. 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。
一般来说,为保证充分的声耦合,在检测时需要有耦合剂(机油或水等)填充检测探头和被检查表面之间的空隙。
电磁超声检测电磁超声的产生机理
处于交变磁场中的金属导体,其内部将产生涡流,同时由于任何电流在磁场中收到洛伦兹力的作用,而金属介质在交变应力的作用下将产生应力波,频率在超声波范 围内的应力波即为超声波。于此相反,由于此效应呈现可逆性,返回声压使质点的振动在磁场作用下也会使涡流线圈两端的电压发生变化,因此可以通过接收装置进 行接收并放大显示。我们把用这种方法激发和接收的超声波称为电磁超声。在上述方法中,换能器已经不单单是通交变电流的涡流线圈以及外部固定磁场的组合体, 金属表面也是换能器的一个重要组成部分,电和声的转换是靠金属表面来完成的。电磁超声只能在导电介质上产生,因此电磁超声只能在导电介质上获得应用。
电磁超声检测电磁超声的基本结构
电磁超声检测装置主要由高频线圈、外加磁场、试件本身三部分组成,电磁超声基本结构值得一提的是,产生电磁超声的有两种效应,洛伦兹力效应和磁致伸缩效 应。高频线圈通以高频激励电流时就会在试件表面形成感应涡流,感应涡流在外加磁场的作用下会受到洛伦兹力的作用产生电磁超声;同样,强大的脉冲电流会向外 辐射一个脉冲磁场,脉冲磁场和外加磁场的复合作用会产生磁致伸缩效应,磁致伸缩力的作用也会产生不同波形的电磁超声。洛伦兹力和磁致伸缩力两种效应具体是 哪种在起着主要作用,主要是由外加磁场的大小、激励电流的频率决定。
电磁超声检测电磁超声的特点编辑 电磁超声检测电磁超声的优点
相对于常规超声波检测,电磁超声具有以下优点:
1. 非接触检测,不需要耦合剂,可透过包覆层等。EMAT的能量转换,是在工件表面的趋肤层内直接进行得。因而可将趋肤层看成是压电晶片,由于趋肤层是工件的表面层,所以EMAT产生的超声波不需要任何耦合介质。
2. 产生波形形式多样,适合做表面缺陷检测。EMAT在检测的过程中,在满足一定的激发条件时,会产生表面波、SH波和Lamb波。如果改变激励电信号频率满 足一定公式,则声波能以任何辐射角θ向工件内部倾斜辐射。即在其它条件不变的前提下,只要改变电信号频率,就可以改变声的辐射角,这是EMAT的又一特 点。由于这一特点的存在,可以在不变更换能器的情况下,实现波形模式的自由选择。
3. 适合高温检测。随着国家在能源、动力企业的投入和发展,各种高温压力管道逐渐增多。作为特种设备的压力管道,一旦出现事故,损失将非常严重。对此,国家有 相关政策法规强制检测,以实现最小的事故发生率。这就使得高温压力管道检测成为一个急需解决的问题。而电磁超声正是解决这个问题的最好选择。电磁超声相对 于常规超声一个最大的优点就是其非接触性。热体在空间辐射的温度场是按指数衰减的,探头离检测试件表面每提离一段距离,其探头环境温度就有显著的下降,所 以,电磁超声可以用于高温管道检测。
4. 对被探工件表面质量要求不高。EMAT不需要与声波在其中传播的材料接触,就可向其发射和接收返回的超声波。因此对被探工件表面不要求特殊清理,较粗糙表面也可直接探伤。
5. 检测速度快。传统的压电超声的检测速度,一般都在10米/分钟左右,而EMAT可达到40米/分钟,甚至更快。
6. 声波传播距离远。EMAT在钢管或钢棒中激发的超声波,可以绕工件传播几周。在进行钢管或钢棒的纵向缺陷检测时,探头与工件都不用旋转,使探伤设备的机械结构相对简单。
7. 所用通道与探头数量少。在实现同样功能的前提下,EMAT探伤设备所用的通道数和探头数都少于压电超声。特别在板材EMAT探伤设备上就更为明显,压电超声要进行板面的探伤需要几十个通道及探头,而EMAT则只需要四个通道及相应数量的探头就可以了。
8. 发现自然缺陷的能力强EMAT对于钢管表面存在的折叠、重皮、孔洞等不易检出的缺陷都能准确发现。
电磁超声检测电磁超声的缺点
1. 它的换能效率要比传统压电换能器低20-40dB。当然,这个缺点可以用精心设计与制造电子发射机与接收机、换能器来弥补。
2. 高频线圈与工件间隙不能太大。线圈从工件表面每提高一个绕线波长的距离,声信号幅度就要下降107dB和96dB。